






摘要

典型群作用下的矩阵分布

专 业： 统计学
博 士 生： 王浩铭
指导教师：黄辉教授,蒋智超教授

摘要

本文提出了四类矩阵正态分布,作为变量间效应 (Ψ )与样本间效应 (Φ)可分
离模型 (Φ⊗Ψ )的推广. 根据精度矩阵的特定张量形式,得到了样本方差和协方差
的联合分布,进而得到了相应的积矩分布,矩阵 𝑡分布,与矩阵𝐹 分布. 一些已知的
结果,包括非中心威沙特分布和正态二次型分布,现在作为主要定理的推论出现.

此外,通过证明一个适应的、右连续的、非递减的、具有单位跳跃且初值为零的整
数值随机过程具有极小可料强度当且仅当它是绝对连续测度变换下的标准泊松
过程,我们设计了点过程的重要性采样与拟合优度检验算法. 最后,我们将方法应
用于元素丰度与银河系演化巡天数据集 (SAGES), 给出了 RA=25.21,DEC=34.17

天区的 12个老年红超巨星的候选 ID,可供天文学实证研究.

关键词：矩阵正态分布，不变多项式，经典特殊函数，点过程，天文数据
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Abstract
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Major: Statistics

Name: Wang Haoming

Supervisors: Prof. Huang Hui, Prof. Jiang Zhichao

Abstract

This thesis introduces four matrix normal distributions extending the separable co-

variance Φ⊗Ψ with potentially variable-level (Ψ ) and/or sample-level (Φ) correlations.

The joint distribution of sample variances and covariances, leading to the product mo-

ment distribution, matrix 𝑡 distribution, and matrix 𝐹 distribution, is considered when

precision matrices admit a specific tensor form. Several well-known results, includ-

ing the non-central Wishart distribution and normal quadratic forms, now appear as

corollaries. Besides, by proving that an adapted, right‐continuous, non-decreasing, in-

teger‐valued process with unit jumps and starting at zero has a minimal predictable

intensity if and only if it is a standard Poisson process under an absolutely contin-

uous transformation of measures, we design algorithms for importance sampling and

goodness-of-fit test of point processes. Finally, applying these methods to the Stellar

Abundance and Galactic Evolution Survey (SAGES) dataset, we provide twelve can-

didate IDs for old red supergiants in the region RA=25.21, DEC=34.17, which can be

used for further astronomical studies.

Keywords: Matrix normal distribution, Invariant polynomial, Classical special func-

tion, Point process, Astronomical data
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本文约定
记号约定

𝑥, 𝑦, 𝑧, … 标量或向量.

𝐴, 𝐵, 𝐶, … 矩阵.

𝐺𝐿(𝑛) 𝑛阶可逆方阵的一般线性群.

𝑂(𝑛) 𝑛阶实方阵的正交群.

𝑈(𝑛) 𝑛阶复方阵的酉群.

𝑆𝐿(𝑛) 𝑛阶可逆方阵中满足行列式为 +1的子群. 𝑆𝑂(𝑛), 𝑆𝑈(𝑛)类似.

𝑆𝑝(𝑛) 2𝑛阶复方阵的辛群.

𝐺𝑛,𝑝 𝑛维线性空间中所有 𝑝维子空间的格拉斯曼流形.

𝑉𝑛,𝑝 𝑛 × 𝑝矩阵的斯蒂菲尔流形 𝑋′𝑋 = 𝐼𝑝.

ℜI,II,III,IV 四类典型域.

ℭI,II,III,IV 四类典型域的特征流形.

𝑑𝑋 矩阵 𝑋 的微分形式.

(𝑑𝑋) 矩阵微分形式的外积, ⋀𝑛
𝑖,𝑗 矩阵, ⋀𝑛

𝑖≤𝑗 对称方阵, ⋀𝑖<𝑗 斜对称方阵.

[𝑑𝑋] 紧群上的归一化哈尔测度.

𝜆, 𝜇, 𝜈, … 整数分拆.

(𝑎)𝜅 上阶乘幂. 类似地, (𝑎)𝜅 表示下阶乘幂.

𝛤𝑝(𝑎) 多元伽马函数.

𝐵𝑝(𝑎, 𝑏) 多元贝塔函数.

ℱ𝑠, 𝑠 ≤ 𝑡 样本空间Ω上的 𝜎-代数流.

ℱ∞ 包含所有 ℱ𝑡, 𝑡 ≥ 0的最小 𝜎-代数.

ℱ 𝑁
𝑠 , 𝑠 ≤ 𝑡 由过程𝑁 生成的 𝜎-代数流.
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经典特殊函数

1. 0𝐹0指数函数.

(a) 𝜒2分布.

(b) 样本协方差分布 (威沙特分布).

(c) 样本协方差的特征根分布.

2. 1𝐹0二项式级数.

(a) 方差比 𝐹 分布.

(b) 两样本协方差的特征根分布 (总体协方差不相等 𝛴1 ≠ 𝛴2).

3. 0𝐹1贝塞尔函数.

(a) 非中心 𝜒2分布.

(b) 非中心样本协方差分布 (非中心威沙特分布).

(c) 非中心样本协方差的特征根分布 (总体协方差已知).

4. 1𝐹1合流超几何函数.

(a) 非中心 𝐹 分布.

(b) 非中心多元贝塔分布 (狄利克雷分布).

(c) 非中心两样本协方差的特征根分布.

5. 2𝐹1高斯超几何函数.

(a) 多重相关系数.

(b) 典则相关系数.
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第 1章 引言

第 1章 引言
1.1 问题背景

伴随着科技的进步和生产资料的积累,以矩阵为对象的分布走进了人们的视
野. 传统的多元统计分析,比如多元时间序列的向量自回归模型,作为向量的序列
在时间上具有相关性,更重要的是,在不同分量之间也具有相关性. 经典的 𝑡统计
量, 𝐹 统计量都是针对单变量或者是向量定义的,不能满足实际生产生活的需求.

这一困难体现在多元时序协方差结构的张量形式的复杂性. 具体来说,它们往往
是多维度、方差异质和非平稳的. 这为我们数学建模带来了挑战.

一种可取的办法是从随机过程理论出发, 将时间序列视作二阶随机场, 时间
维度视作第一指标, 向量维度视作第二指标, 来研究它们的性质. 经典的卡夫宁-

洛伊夫定理和傅里叶分析技术为这一方法的数学基础提供了有力保障 [1-2] . 另一
办法则是考虑典型群作用下的矩阵分布,这里的典型群一般指正交群、酉群、辛群
等. 这一办法更为直接,不用引入冗余超参数,直接对面板数据建模,但其数学理
论却更为艰深,用到的技术也更加精细. 此外,近来多元统计分析的教材比如 [3-4] ,

包括更经典的 [5-7] , 大都只讨论了独立同分布多元正态样本的抽样分布, 例如威
沙特分布,但对一般非独立同分布的情形,现有文献则相对较少 [3-4] .

本文将阐述两种方法之间的联系,通过引入多参数随机场的矩形坐标来推导
具有相依条目的矩阵正态分布及其抽样分布. 其分布理论的构建依赖典型矩阵变
换下的不变多项式, 这是贯穿本文的核心概念. 通常来说, 直接在典型群上积分
往往比较困难,我们需要在恰当的多项式空间中选择一组规范正交基来表示拉普
拉斯-贝特拉米算子的解,这其中的典型解就是带 (zonal)多项式,数学物理方程中
称作球调和. 这组基扮演了类似极坐标下径向-角向分解中的角向部分,使得我们
能够方便地进行积分运算. 由于这一方面的参考文献还相对较少,我们将尽可能
地从叙述历史的角度出发,介绍我们所需要用到的工具办法. 可参考的材料包括:

典型群表示理论 [8-10] ,经典多元统计分析 [11-17] ,带多项式与超几何函数 [18-21] . 阅
读这些材料对理解本文的主要工具和思想是有裨益的.

矩阵分布常常出现在多维、非马尔可夫、连续参数的随机过程当中,其中一
个典型的代表就是点过程. 点过程的定义与我们常说的信息流密切相关,信息流
应当包含所有当下可能发生的事件全体. 火山爆发之前一般伴随着地壳震动,将
火山爆发的时刻视作停时,这一时刻的停止信息流就应当包含火山爆发之前由地

3
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壳震动引起的所有可能发生的事件全体. 停时则是近代随机过程发展中出现的核
心概念. 比如一个积分制比赛,负者失分而胜者得分,参与者在初始积分失尽时停
止比赛, 则比赛停止的时刻, 或参与者积分为零的时刻就是一个停时. 在柯尔莫
哥洛夫的公理体系中,信息流或称滤子就是概率空间上一族单调递增的子西格玛
代数,条件期望则是可测函数在子西格玛代数上的投影. 可料过程是指那些仅依
赖于先于当下时刻的信息的随机过程. 比如风雨交加的夜晚我们总是先看见闪电
再听到雷声,自然界中的雷声就是一个可料过程. 这一定义总是依赖于信息流的.

所谓极小滤子问题,就是在概率空间上对所有滤子寻找一个关于包含偏序的极小
元,使得点过程的强度保持可料性质. 因为由集合论中的公理极小滤子总是存在
的. 极小滤子可以很大,甚至超出由过程全体生成的西格玛代数,但如果极小滤子
是由过程自然生成的西格玛代数流,它显然就是最小的.

相较于已被广泛研究的滤子扩张问题,例如 [22-29] ,有关滤子限制问题的相关
研究依旧很少 [30-33] . 与前人的工作相比,我们并不假设零集完备条件,这使得经
典的哈恩-巴拿赫定理得以应用于极小滤子问题. 通过研究一个适应的、右连续
的、非减的、具有单位跳跃且初值为零的整值随机过程的极小可料强度,我们肯
定了布里莫 [34]于 1972年提出的一个猜想. 该定理有两个推论 [35] ,一个是任意霍
克斯过程都是绝对连续测度变换下的标准泊松过程,另一推论则是考克斯过程可
以分解为非齐次泊松过程与奇异点过程之和,在假设分解独立的前提下. 这为拟
合优度检验和重要性采样提供了有力保障,填补了相关领域的理论空白.

(a) 𝜙 = 0 (b) 𝜙 ≢ 0

图 1.1 霍克斯过程在两种情形下强度函数 𝜆𝑡 随时间 𝑡变化的单个样本轨道: (a) 𝜇(𝑡) = 0.3 +
0.2𝑒−0.1𝑡; (b) 𝜇(𝑡) = 0.1 + 0.2𝑒−0.1𝑡 且 𝜙(𝑡) = 0.2.
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1.2 相关研究

在单变量统计分析中, 𝜒2 分布, 𝑡分布和 𝐹 分布等抽样分布都是基于独立同
分布正态样本的最常见的统计量. 戈塞 (笔名“Student”) [36]最早研究了来自正态
总体样本标准差的分布, 并据此得到了样本均值与样本标准差之比的分布, 也即
𝜒2分布和 𝑡分布. 这为多变量统计分析奠定了基础.

在两变元的情形, 除了总体的均值向量和方差向量, 我们还需要估计总体分
量间的两两相关系数或回归系数. 不同于单变元情形, 费歇尔 [37]最早得到了来
自独立同分布二元正态总体的样本方差与样本协方差的联合分布. 卡尔·皮尔
逊 [38]和罗马诺夫斯基 [39]在费歇尔工作的基础上得到了相应的积矩分布. 这是威
沙特推广 𝜒2分布至矩阵情形的发轫.

在多变元的情形,威沙特 [40]最早在中心情形 (考虑样本均值𝑀 , 𝑀 = 0)给出
了来自多元正态总体独立同分布样本的积矩分布. 后人如安德森 [41] (rank(𝑀) ≤
2)和詹姆斯 [42] (rank(𝑀)任意)给出了积矩分布在非中心情形的推广,

𝑊𝑝(𝑆; 𝑛) = 1
2

𝑛𝑝
2 𝛤𝑝(𝑛

2)|Ψ |
𝑛
2

etr (−1
2Ψ

−1𝑆) |𝑆|
𝑛−𝑝−1

2 , 当𝑀 = 0;

× etr (−1
2𝛺) 0𝐹1 (

𝑛
2; 1

4𝛺Ψ−1𝑆) , 当𝑀 ≠ 0;
(1.1)

其中 etr(𝑍) = exp tr(𝑍), |𝑍| = det(𝑍), 𝛤𝑝(𝑎)是多元伽马函数,

𝛤𝑝(𝑎) = ∫𝐴>0
etr(−𝐴)|𝐴|𝑎− 𝑝+1

2 (𝑑𝐴) = 𝜋
𝑝(𝑝−1)

4

𝑝

∏
𝑖=1

𝛤 (𝑎 − 𝑖 − 1
2 ) , (1.2)

其中 𝑎的实部ℜ(𝑎) > 1
2(𝑝 − 1), 𝐴 > 0意味着积分取遍所有 𝑝 × 𝑝实对称正定矩阵,

且第二个等号右边的 𝛤 代表通常意义下的伽马函数, 0𝐹1(𝑎; 𝑍)是矩阵参量超几
何函数. 在(1.1)中, 𝑛是样本的大小, 𝑝是变量的数目, Ψ 是 𝑝元正态总体的协方差
矩阵, 𝛺是样本均值的非中心参数, 𝑆 = (𝑠𝑖𝑗)是由 1

2𝑝(𝑝 + 1)个样本矩构成的 𝑝 × 𝑝
对称矩阵,

𝛺 = Ψ−1𝑀′𝑀, 𝑆 = 𝑋′𝑋,

其中 𝑛个 𝑝维正态向量按行排列成 𝑛 × 𝑝样本矩阵 𝑋. 当 𝑝 = 1时, (1.1)式就退化
成样本方差乘上自由度为 𝑛的皮尔逊非中心卡方分布

𝑥̄ = 1
𝑛

𝑛

∑
𝑖=1

𝑥𝑖,

𝑠2 =
𝑛

∑
𝑖=1

(𝑥𝑖 − 𝑥̄)2 + 𝑛𝑥̄2,
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其中 𝑥1, … , 𝑥𝑛 代表来自 𝑁(𝜇, 𝜎2)的样本,这里的 𝜇 和 𝜎 代表正态总体的均值和
标准差. 此时,样本方差

𝐷2 = 1
𝑛

𝑛

∑
𝑖=1

(𝑥𝑖 − 𝑥̄)2

与样本均值 𝑥̄独立. 戈塞定义的 𝑡分布即是它们的比值,

𝑡 = 𝑥̄
𝐷.

近些年来, 许多作者 [3-4,43-52]尝试将威沙特的工作从独立同分布正态向量推
广到椭球等高分布族, 其中不同样本之间可能存在相关性. 在多元统计分析中,

非独立样本引出了一个根本性的问题,那就是样本间相关系数或回归系数往往非
零. 如果坚持采用最精确的假设, 在假设正态分布的前提下，确定 𝑛个样本在 𝑝
个变量中的样本方差和协方差通常需要估计 1

2𝑛𝑝(𝑛𝑝 − 1)个两两相关系数或回归
系数,这些参数的数目近似于 𝑂((𝑛𝑝)2). 为了减轻过拟合的负担,一种常见的方法
是假设总体协方差或者精度矩阵由特定的张量结构决定, 例如文献 [53]中的椭球
等高分布假设. 从这个意义上讲,我们只需要考虑 1

2𝑝(𝑝 + 1)个二次型的分布,

𝑦′
1𝐴11𝑦1, 𝑦′

1𝐴12𝑦2, … , 𝑦′
1𝐴1𝑝𝑦𝑝,

𝑦′
2𝐴22𝑦2, … , 𝑦′

2𝐴2𝑝𝑦𝑝,

⋮

𝑦′
𝑝𝐴𝑝𝑝𝑦𝑝,

(1.3)

这对应于四种总体精度矩阵的张量形式 𝑇1, 𝑇1 1
2
, 𝑇2和 𝑇3. 然而,正如文献 [53]所指

出的,在多元椭球等高分布的谱分解中独立性仍然是一个未解决的问题. 本文的
4.1节将利用精度矩阵的四种嵌套类型的谱分解来解决这一问题. 这一推广建立
了正态假设下四种张量记号与椭球等高分布之间的一一对应关系. 基于此,我们
在 4.2节推导了这些正态矩阵二次型的分布,并由此得到了相应的矩母函数与特
征根的联合分布. 这将包括非中心情形在内的二次型分布从多元正态总体推广到
更为一般的椭球等高总体.

卡特里 [43]首先得到了齐次二次型的联合分布, 即 𝐴𝑖𝑗 = 𝐴, 其中 𝐴 是一个
固定的精度矩阵, 其超几何函数项为双矩阵参量超几何函数 0𝐹0. 在卡特里的工
作 [43]中, 二次型的精确分布并没有像文献 [44]中那样被表示成带多项式的级数,

但却引入了讨厌参数 𝑞𝑖𝑗 > 0 和超几何函数 0𝐹0. 由于(1.1)式中的中心威沙特密
度函数类似于伽马密度, 超几何函数 0𝐹0 并未显式出现, 这种表达式在实践中难
以应用. 此外,如詹姆斯 [12,15]所述,在中心情形,双矩阵参量的超几何函数经常出
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现在矩母函数和特征根分布当中,而非密度函数,并且这些函数通常难以计算. 因
此,将近三十年后,马泰 [48]才通过累积量 (cumulants)重新考察了 𝑝 = 2时的异质
二次型分布. 本文确定了一般的 𝑝 > 2情形下 1

2𝑝(𝑝 + 1)个异质二次型的中心分布,

且不引入超几何函数和不必要的参数 𝑞𝑖𝑗 . 只有在非中心情形下,这些异质二次型
的分布才表示为单矩阵参量超几何函数 0𝐹1, 这与(1.1)式保持一致. 为了理论自
洽,这些矩阵必须满足 𝐴′

𝑖𝑗 = 𝐴𝑗𝑖,且 𝐴𝑖𝑗(𝑖 ≠ 𝑗)的对角线元素均为零. 作为处理维
数灾难的主要技术, 我们需要考虑同时对角化 𝑇1, 𝑇1 1

2
, 𝑇2 和 𝑇3 来减少未知参数

数目,而这些概念代表着多元统计分析从独立样本假设到相依样本假设的转变.

这一推广的另一动机来自已被诸多学者研究的矩阵 𝑡分布 [3,54-55] . 尽管有些
复杂,单变量情形的非中心 𝑡分布可以通过合流超几何函数 1𝐹1来表示,但是该函
数的数值计算往往较为困难. 鉴于此问题的复杂性,顿内特 [56]将单变量 𝑡分布推
广到双变量中心情形,随后约翰 [57] ,克希尔萨加尔 [58]和狄克 [59]分别将其推广到
多变量 𝑡分布,三者均针对中心情形. 至于非中心情形,现有关于 𝑡分布在多变量
情形和矩阵变量情形的推广都仅考虑了中心比值再加上固定均值的定义,以避免
引入合流项 1𝐹1,这一点可见文献 [3,54-55,60-61] . 然而,如果总体均值是一个未知参
数,则中心统计量通常是无法精确得到的. 因此,即使我们对总体知之甚少,也需
要构建恰当的均值统计量, 尤其是在非中心情形下. 为了与非中心单变量 𝑡分布
的定义相吻合,本文在 4.3节引入了具有非中心矩阵正态分子的矩阵 𝑡分布. 由此
推导出矩阵 𝑡分布的密度函数也具有类似的合流超几何函数项 1𝐹1. 从均值参数
的敏感性分析中可以看出,该密度函数与单变量 𝑡分布相对接近.

除此之外,在方差分析或判别分析中,求最小特征根的分布被康斯坦丁 [16]称
作是非常困难的. 而贝伦斯-费歇尔问题则是这一问题的核心, 特别是涉及组间
独立但方差异质的情形. 其精确检验的构造要用到形如(1.3)的两个独立二次型
之比. 在非中心威沙特情形(1.1), 卡特里 [62] , 戴维斯 [63] , 平川文子 [64] , 筑瀬靖
子 [65]和古普塔 [66]分别计算了比统计量的概率密度函数, 其具有超几何函数项
1𝐹0. 事实上, 该结果对更一般的左球分布类也成立, 其中心情形由劳特 [67]得
到. 要得到非独立且非中心情形下比统计量的分布, 我们首先应得到形如(1.3)的
1
2𝑝(𝑝 + 1)个二次型的非中心分布. 本文在 4.4节给出了矩阵 𝐹 分布的定义,并证
明了此情形下比统计量也具有类似的超几何函数项 1𝐹0. 此外, 𝐹 统计量能够同
时考虑均值与方差的波动信息,基于特征根的统计量在统计应用中扮演着重要角
色. 本文同时给出了矩阵 𝐹 分布最大最小特征根的分布,较之单个积矩分布的最
大最小特征根的分布 [62,68-70] ,这一形式更为简洁.
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矩阵分布广泛出现在天文学与点过程的实际应用中. 事实上,点过程是一类
特殊的半鞅. 根据杜布-梅耶分解定理,点过程可以分解为局部鞅和可料有界变差
过程之和. 布朗运动、泊松过程、伊藤扩散等都是半鞅的典型例子. 我们知道半
鞅在测度变换下仍是半鞅, 本文则是通过测度变换研究了时变半鞅的一个问题.

对于连续半鞅,蒙洛衣 [71]证明了任何连续局部鞅都是时变布朗运动,尽管可能需
要扩大滤过概率空间. 根据佐恩引理, 概率空间上存在一个最小滤子. 对于布朗
运动,许多作者已经解决了这个问题,例如角古静夫 [22] ,吉萨诺夫 [23] ,克拉克 [24] ,

诺维科夫 [25] ,风卷纪彦 [26]等. 与布朗运动类似,泊松过程是许多随机应用中的又
一原型. 事实上,点过程作为一个适应的、右连续的、非减的、具有单位跳跃且初
值为零的整值随机过程,可以表示为时变泊松过程. 然而,适当的滤子扩张仍然是
必要的. 布里莫 [34]曾提问点过程的极小滤滤子何时是由过程自然生成的,并猜想
当且仅当它是绝对连续测度变换下的标准泊松过程. 本文 5.1节对此猜想作出了
肯定的回答.

虽然在很多情况下, 滤子扩张有助于我们表示点过程, 但它也给这类过程的
分析带来了一些麻烦,例如包含更多的零集. 滤子限制问题是滤子扩张问题的对
偶,后者的有关文献见 [27-29] . 极小滤子问题最早由雅各德 [30]研究,随后的推广见
布里莫 [31] , 达利和维尔琼斯 [32] , 卡尔 [33] . 他们的方法均基于风险函数的条件期
望. 例如 [32]中的定理 14.1和 [33]中的定理 2.31. 在该方法中, 不可避免地需要满
足狄拉歇尔 [72]意义下的零集完备假设,即所有终端零集都包含在初始滤子中. 然
而,基于零集完备的显式构造限制了极小滤子的实用性. 本文采用泛函分析中的
哈恩-巴拿赫定理证明了极小可料强度的存在性. 该定理仅涉及半鞅的闭子空间
的性质,使得我们能够摆脱不必要的零集完备假设,从而获得自然的滤子限制. 这
一定理在点过程的拟合优度检验与重要性采样中有重要应用.

1.3 本文工作

本文将 𝑛𝑝个正态变量根据精度矩阵的奇异值分解分为四类 𝑇1, 𝑇1 1
2
, 𝑇2和 𝑇3,

并据此推广了相关抽样分布, 如积矩分布、矩阵 𝑡 分布和矩阵 𝐹 分布. 其优势
在于类似 [53]定理 3.6.7中椭球等高分布的简洁表示,有助于理解更一般的对称分布.

此外,本文还证明了一个点过程具有极小可料强度当且仅当它是绝对连续测度变
换下的标准泊松过程. 这肯定了布里莫 [34]第 48页提出的一个猜想. 通过天文学案
例分析,我们给出了元素丰度与银河系演化巡天数据集 (SAGES)当中 RA=25.21,

DEC=34.17天区的 12个老年红超巨星的候选 ID,可供天文学实证研究.
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第 2章 矩形坐标与球面坐标
设 𝑇 ⊆ [0, ∞), 𝑆 ⊆ ℝ𝑑是欧式空间中的紧集. 复值随机场𝑍(𝑡, 𝑥), 𝑡 ∈ 𝑇 , 𝑥 ∈ 𝑆

称作是二阶的,如果
𝑬 ∬𝑇 ×𝑆

|𝑍(𝑡, 𝑥)|2𝑑𝑡𝑑𝑥 < ∞.

随机变量列 𝑋𝑛称作依二阶矩收敛到 𝑋,如果 lim
𝑛→∞

𝑬|𝑋𝑛 − 𝑋|2 → 0.

定义 2.1 (𝑇1, 𝑇1 1
2
, 𝑇2与 𝑇3). 设 𝑍(𝑡, 𝑥)的均值为零, 𝑬[𝑍(𝑡, 𝑥)] = 0, 𝑡 ∈ 𝑇 , 𝑥 ∈ 𝑆.

𝑇1 如果存在希尔伯特空间 𝐿2(𝑆)上的一组标准正交基 {𝜓𝑛(𝑥)}
∞
𝑛=1, 使得对任

意 𝑡 ∈ 𝑇 , 𝑍(𝑡, 𝑥)可以在依二阶矩收敛的意义下,关于 𝑥 ∈ 𝑆 一致地展开为
级数

∞

∑
𝑛=1

𝜉𝑛(𝑡)𝜓𝑛(𝑥)

其中 {𝜉𝑛(𝑥)}
∞
𝑛=1是𝑆上的一组零均值随机场,满足𝑬[𝜉𝑛(𝑡)𝜉𝑛′(𝑡)] = 𝑐𝑛(𝑡)𝛿𝑛,𝑛′ .

这里的 𝑐𝑛(𝑡)是 𝑇 上的非负实值函数,满足对任意 𝑡 ∈ 𝑇 , 𝑐𝑛(𝑡)关于 𝑛 ↓ 0.

𝑇1 1
2
同 𝑇1. 如果额外地,对任意 𝑡, 𝑡′ ∈ 𝑇 , 𝑬[𝜉𝑛(𝑡)𝜉𝑛′(𝑡′)] = 𝑐𝑛(𝑡)𝛿𝑛,𝑛′𝛿𝑡,𝑡′ .

𝑇2 同 𝑇1. 如果额外地,存在希尔伯特空间𝐿2(𝑇 )上的一组标准正交基{𝜙𝑚(𝑡)}
∞
𝑚=1,

使得对任意 𝑛, 𝜉𝑛(𝑡)可以在依二阶矩收敛的意义下,关于 𝑡 ∈ 𝑇 一致地展开
为级数

∞

∑
𝑚=1

𝜂𝑛𝑚𝜙𝑚(𝑡)

其中{𝜂𝑛𝑚}
∞
𝑛,𝑚=1是两两不相关的零均值随机变量,满足𝑬(𝜂𝑛𝑚𝜂𝑛′𝑚′) = 𝑐𝑛𝑚𝛿𝑛,𝑛′𝛿𝑚,𝑚′ .

这里的 {𝑐𝑛𝑚}∞
𝑛,𝑚=1是非负实数列,满足对任意 𝑛, 𝜔𝑛𝑚关于 𝑚 ↓ 0.

𝑇3 同 𝑇2. 如果额外地,存在非负实数列 {𝜎2
𝑚}∞

𝑚=1和 {𝜏2
𝑛 }∞

𝑛=1分别满足 𝜎2
𝑚 ↓ 0和

𝜏2
𝑛 ↓ 0以及 𝑐𝑛𝑚 = 𝜏2

𝑛 𝜎2
𝑚.

(*) 同 𝑇3. 如果额外地,存在随机变量列 {𝜆𝑚}∞
𝑚=1和 {𝜇𝑛}∞

𝑛=1,使得

𝜂𝑛𝑚 = 𝜇𝑛𝜆𝑚

并且它们满足 𝑬(𝜆𝑚𝜆𝑚′) = 𝜎2
𝑚𝛿𝑚,𝑚′ 和 𝑬(𝜇𝑛𝜇𝑛′) = 𝜏2

𝑛 𝛿𝑛,𝑛′ .

记 𝑐𝑖(𝑡) = 𝑬|𝜉𝑖(𝑡)|2, 𝑐𝑖(𝑡1, 𝑡2) = 𝑬[𝜉𝑖(𝑡1)𝜉𝑖(𝑡2)]与 𝑐𝑖𝑗 = 𝑬|𝜂𝑖𝑗|2. 根据本征正交分
解定理 [2]第二卷,第 37.3节 ,我们有定义2.1的充分必要刻画,证明见 [73] .
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表 2.1 𝑇1, 𝑇1 1
2
, 𝑇2 与 𝑇3 的比较.

𝑇1 ⇔ 𝑬[𝑍(𝑡, 𝑥1)𝑍(𝑡, 𝑥2)] = ∑𝑖 𝑐𝑖(𝑡)𝜓𝑖(𝑥1)𝜓𝑖(𝑥2).
⇔ 𝜓𝑖(𝑥)是 𝐶(𝑡, 𝑡, 𝑥1, 𝑥2)的特征函数,与 𝑡无关.

𝑇1 1
2

⇔ 𝑬[𝑍(𝑡1, 𝑥1)𝑍(𝑡2, 𝑥2)] = ∑𝑖 𝑐𝑖(𝑡1, 𝑡2)𝜓𝑖(𝑥1)𝜓𝑖(𝑥2).

⇔ 𝜓𝑖(𝑡)是 𝐶(𝑡1, 𝑡2, 𝑥2, 𝑥2)的特征函数,与 𝑡1, 𝑡2无关.

𝑇2 ⇔ 𝑬[𝑍(𝑡1, 𝑥1)𝑍(𝑡2, 𝑥2)] = ∑𝑖 ∑𝑗 𝑐𝑖𝑗𝜙𝑗(𝑡1)𝜙𝑗(𝑡2)𝜓𝑖(𝑥1)𝜓𝑖(𝑥2).
⇔ 𝑐𝑖𝑗 , 𝜙𝑗(𝑡)𝜓𝑖(𝑥)是 𝐶(𝑡1, 𝑡2, 𝑥1, 𝑥2)的特征值与特征向量.

𝑇3 ⇔ 𝑬[𝑍(𝑡1, 𝑥1)𝑍(𝑡2, 𝑥2)] = 𝐶2(𝑡1, 𝑡2)𝐶1(𝑥1, 𝑥2).
⇔ 𝜏2

𝑗 , 𝜙𝑗(𝑡), 𝜎2
𝑖 , 𝜓𝑖(𝑥)分别是 𝐶2(𝑡1, 𝑡2), 𝐶1(𝑥1, 𝑥2)的特征值与特征向量.

(∗) ⇔ 存在 𝑋(𝑥), 𝑌 (𝑡)使得 𝑍(𝑡, 𝑥) = 𝑌 (𝑡)𝑋(𝑥),
𝑬[𝑌 (𝑡1)𝑌 (𝑡2)] = 𝐶2(𝑡1, 𝑡2),和 𝑬[𝑋(𝑥1)𝑋(𝑥2)] = 𝐶1(𝑥1, 𝑥2).

2.1 矩形坐标

用符号𝐴⊗𝐵代表矩阵𝐴 = (𝑎𝑖𝑗)和矩阵𝐵的克罗内克积,即分块矩阵 (𝑎𝑖𝑗𝐵).
用符号 vec(𝐴), 𝐴 = (𝑎1, 𝑎2, … , 𝑎𝑛)代表矩阵 𝐴的向量化 [𝑎1; 𝑎2; … ; 𝑎𝑛]. 设 ℝ, ℂ, 𝕆
分别代表实数域、复数域和四元数体.

定义 2.2 (矩形坐标). 考虑 𝔽 = ℝ, ℂ, 𝕆上的 𝑛𝑝 × 𝑛𝑝分块矩阵 𝛳如下

𝛳 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝛳11 𝛳12 … 𝛳1𝑛

𝛳21 𝛳22 … 𝛳2𝑛

⋮ ⋮ ⋱ ⋮
𝛳𝑛1 𝛳𝑛2 … 𝛳𝑛𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

其中 𝛳𝑖𝑖 (𝑖 = 1, 2, … , 𝑛)是维数为 𝑝的正定矩阵. 所谓矩形坐标,是指 𝑝 × 𝑝矩阵
𝐵 = (𝑏1, 𝑏2, … , 𝑏𝑝),满足 ̄𝑏′

𝑖 𝑏𝑗 = 𝛿𝑖𝑗 ,使得 𝛳具有如下结构

𝑇1 如下展开式成立
𝛳 =

𝑝

∑
𝑗=1

𝑝

∑
𝑗′=1

𝐴𝑗𝑗′ ⊗ 𝐵𝑗𝑗′ , (2.1)

其中 𝐵𝑗𝑗′ = 𝑏𝑖 ̄𝑏′
𝑗′ 且 𝐴𝑗𝑗′(𝑘, 𝑙) = ̄𝑏′

𝑗𝛳𝑘𝑙𝑏𝑗′ 满足

𝐴𝑗𝑗′(𝑘, 𝑘) = 0 (𝑗 ≠ 𝑗′).

换句话说, 𝐴𝑗𝑗′ (𝑗 ≠ 𝑗′)的对角线元素为零.
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𝑇1 1
2
展开式 𝑇1成立,且

𝐴𝑗𝑗′ = 𝐴𝑗𝑗𝛿𝑗𝑗′ , (2.2)

也就是说, 𝐴𝑗𝑗′ (𝑗 ≠ 𝑗′)为零.

𝑇2 展开式 𝑇1 成立, 且存在另一组 𝑛 × 𝑛 矩形坐标 𝐴 = (𝑎1, 𝑎2, … , 𝑎𝑛), 满足
̄𝑎′
𝑖 𝑎𝑗 = 𝛿𝑖𝑗 ,使得

𝛳 =
𝑛

∑
𝑖=1

𝑝

∑
𝑗=1

𝛾𝑖𝑗𝐴𝑖 ⊗ 𝐵𝑗 , (2.3)

其中 𝐴𝑖 = 𝑎𝑖 ̄𝑎′
𝑖 , 𝐵𝑗 = 𝑏𝑗 ̄𝑏𝑗

′.

𝑇3 展开式 𝑇2成立,且存在正常数 𝛼𝑖, 𝛽𝑗 使得 𝛾𝑖𝑗 = 𝛼𝑖𝛽𝑗 ,或等价地,下式成立

𝛳 = Φ−1 ⊗ Ψ−1, (2.4)

其中 Φ−1 = ∑𝑛
𝑖=1 𝛼𝑖𝑎𝑖 ̄𝑎′

𝑖 , Ψ
−1 = ∑𝑝

𝑗=1 𝛽𝑗𝑏𝑗 ̄𝑏′
𝑗 .

从表2.1不难看出

定理 2.1. 矩形坐标是唯一的.

另一个推论是勋伯格 [74]的离散化情形.

定理 2.2. 𝛴 是正定的当且仅当 𝐴𝑗𝑗 (𝑗 = 1, 2, … , 𝑝)是正定的.

更具体地,我们可以利用正定函数与高斯过程的一一对应来验证球面上含时
正定函数的系数定正这一充要性质,这一点容易从球谐函数的加法定理看出. 因
此,表2.1中的充要条件还可作为研究二阶随机过程理论的一个有力工具. [75]

2.2 球面坐标

设 𝑛, 𝑝是正整数且 𝑛 ≥ 𝑝. 不失一般性地,假设 𝑍 是 𝑛 × 𝑝列满秩实矩阵.

定义 2.3 (球面坐标). 任意 𝑛 × 𝑝矩阵𝑍可唯一地分解为𝑍 = 𝐻𝑅
1
2 ,其中𝐻 (𝑛 × 𝑝)

满足 𝐻′𝐻 = 𝐼𝑝, 𝑅 (𝑝 × 𝑝)是对称正定矩阵. 我们称 𝐻 为 𝑍 的球面坐标. 特别地,

𝐻 = 𝑍(𝑍′𝑍)− 1
2 , 𝑅 = 𝑍′𝑍.

我们把满足 𝐻′𝐻 = 𝐼𝑝 这样条件的 𝑛 × 𝑝 矩阵集合称作斯蒂菲尔流形, 记
作 𝑉𝑛,𝑝. 对一组球面坐标 𝐻 (𝑛 × 𝑝), 我们总可以把它扩充成一个正交矩阵 𝐾 =
(𝐻, 𝐻⟂) ∈ 𝑂(𝑛),其中𝐻⟂ ∈ 𝑉𝑛,𝑛−𝑝的列向量与𝐻 ∈ 𝑉𝑛,𝑝的列向量两两正交. 詹姆
斯 [11]公式 (8.19)最早证明了

11
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命题 2.3 (球面分解). (𝑑𝑍) = 2−𝑝|𝑅|
1
2 (𝑛−𝑝−1) ⋅ (𝑑𝑅) ⋅ (𝑑𝐾),其中 (𝑑𝐾) = (𝐻′𝑑𝐻) ⋅

(𝐻′
⟂𝑑𝐻).

让我们来逐项解释定理2.3的几何意义. 首先, (𝐻′𝑑𝐻)描述了对象𝐻 的列向
量在其张成的 𝑝维子空间内部的旋转. 𝐻′𝑑𝐻 是一个 𝑝 × 𝑝斜对称矩阵, 其独立
参数个数为 𝑝(𝑝−1)

2 . 这些参数对应了在固定 𝑝维子空间下,正交基 𝐻 在该子空间
内的所有可能旋转,也就是 𝑂(𝑝)的体积元. 而 (𝐻′

⟂𝑑𝐻)描述了 𝑝维子空间在 𝑛维
空间中的方向变化. 具体而言, 𝐻′

⟂𝑑𝐻 是一个 (𝑛 − 𝑝) × 𝑝矩阵, 其独立参数个数
为 𝑝(𝑛 − 𝑝). 这些参数描述了 𝑝维子空间如何相对于其正交补𝐻⟂变化,即子空间
在格拉斯曼流形 𝐺𝑛,𝑝 中的运动. 换句话说,两者共同描述了斯蒂菲尔流形 𝑉𝑛,𝑝 的
几何结构,其中 𝑉𝑛,𝑝是以格拉斯曼流形 𝐺𝑛,𝑝为底空间,以正交群 𝑂(𝑝)为纤维的主
丛. 一般来说, 如果不要求 𝑅是对称矩阵, 满足 𝑅′𝑅 = 𝑍′𝑍 的 𝑅不一定是唯一
的. 于是我们有下面的定义.

定义 2.4 (上三角坐标). 任意 𝑛 × 𝑝矩阵 𝑍 可唯一地分解为 𝑍 = 𝐻𝑇 ,其中𝐻 (𝑛 ×
𝑝) 满足 𝐻′𝐻 = 𝐼𝑝, 𝑇 (𝑝 × 𝑝) 是对角线元素为正的上三角矩阵, 即 𝑡𝑖𝑖 > 0 (𝑖 =
1, 2, … , 𝑝). 我们称𝐻 为 𝑍 的上三角坐标.

命题 2.4 (上三角分解). (𝑑𝑍) = 2−𝑝|𝑇 ′𝑇 |
𝑛−𝑝−1

2 𝑑(𝑇 ′𝑇 ) ⋅ (𝑑𝐾).

命题2.4的证明. 取 𝑇 ′𝑇 为 𝑍′𝑍 的科列斯基分解,由定理2.3可得.

另外两种常用的坐标是对角坐标和奇异值坐标,分别针对方阵和一般情形.

定义 2.5 (对角坐标). 设 𝑍 是 𝑛 × 𝑛正定矩阵. 则 𝑍 可唯一地分解为 𝑍 = 𝐻𝛬𝐻′,
其中𝐻 (𝑛×𝑛)满足𝐻′𝐻 = 𝐼𝑛,且𝛬(𝑛×𝑛)是正对角矩阵,即 𝜆𝑖𝑖 > 0 (𝑖 = 1, 2, … , 𝑛).
我们称𝐻 为 𝑍 的对角坐标.

命题 2.5 (对角分解). (𝑑𝑍) = ∏𝑛
𝑖<𝑗(𝜆𝑖 − 𝜆𝑗) ⋀𝑛

1 𝑑𝜆𝑖 ⋅ (𝑑𝐻).

命题2.5的证明. 见津村善郎 [76]定理 2.1 .

定义 2.6 (奇异值坐标). 任意 𝑛 × 𝑝 矩阵 𝑍 可唯一地分解为 𝑍 = 𝐻1𝛬𝐻2‘, 其
中 𝐻1 (𝑛 × 𝑛) 满足 𝐻′

1𝐻1 = 𝐼𝑛, 𝐻2 (𝑝 × 𝑝) 满足 𝐻′
2𝐻2 = 𝐼𝑝, 且 𝛬 (𝑛 × 𝑝) 满足

𝜆𝑖𝑖 > 0 (𝑖 = 1, 2, … , 𝑝). 我们称𝐻1, 𝐻2为 𝑍 的奇异值坐标.

命题 2.6 (奇异值分解). (𝑑𝑍) = ∏𝑝
𝑖=1 𝜆𝑛−𝑝

𝑖 ∏𝑛
𝑖<𝑗(𝜆2

𝑖 − 𝜆2
𝑗 ) ⋀𝑝

1 𝑑𝜆𝑖 ⋅ (𝑑𝐻1) ⋅ (𝑑𝐻2).

命题2.6的证明. 见津村善郎 [76]定理 2.2 .
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第 3章 典型群作用下的不变多项式

第 3章 典型群作用下的不变多项式
3.1 对称群

3.1.1 置换基本定理

用 𝑆(𝑛)代表 𝑛个不同符号的集合 {𝑎1, 𝑎2, … , 𝑎𝑛}上的所有置换,即同构映射
的全体. 形式上, 𝜎 ∈ 𝑆(𝑛)可以写作

𝜎 =
⎛
⎜
⎜
⎝

𝑎1 𝑎2 ⋯ 𝑎𝑛

𝜎(𝑎1) 𝜎(𝑎2) ⋯ 𝜎(𝑎𝑛)

⎞
⎟
⎟
⎠

.

如果存在 1 ≤ 𝑘 ≤ 𝑛, 和集合中的 𝑘 个不同元素 𝑏1, 𝑏2, … , 𝑏𝑘, 使得 𝜎(𝑏1) = 𝑏2,

𝜎(𝑏2) = 𝑏3, … , 𝜎(𝑏𝑘) = 𝑏1,且 𝜎(𝑎) = 𝑎, 𝑎 ≠ 𝑏1, 𝑏2, … , 𝑏𝑘,那么 𝜎 就称作长度为 𝑘
的轮换,记作

𝜎 = (𝑎1𝑎2 … 𝑎𝑘).

如果 (𝑎1𝑎2 … 𝑎𝑘)和 (𝑏1𝑏2 … 𝑏𝑙)是两个没有公共元素的轮换, 它们称作不交轮换.

显然,不交轮换对乘法,即映射的复合,满足交换律. 长度为 2的轮换称作对换.

命题 3.1 (置换基本定理). 任意置换都可以分解为两两不交轮换的乘积,它们在仅

相差顺序和平凡轮换的意义下唯一.

命题 3.2 (轮换基本定理). 任意长度为 𝑘的轮换都可以分解为 𝑘 − 1个对换的乘
积,且同一置换的不同对换分解中,对换的个数具有相同的奇偶性.

3.1.2 杨图

用 𝜆 = (𝜆1, 𝜆2, … , 𝜆𝑘)代表正整数 𝑛的一个分拆,记为 𝜆 ⊢ 𝑛,满足 𝜆1 ≥ 𝜆2 ≥
⋯ ≥ 𝜆𝑘 ≥ 0, 𝜆1 + 𝜆2 + ⋯ + 𝜆𝑘 = 𝑛. 此时称 𝑛为 𝜆的权重,记作 |𝜆| = 𝑛. 整数分拆
称作是有效的,如果 𝜆𝑘 > 0,此时 𝑘称作 𝜆的长度,记作 𝑙(𝜆). 比方说, 𝑛 = 4的所
有有效分拆为

(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1).

对任意有效分拆 𝜆, 其对应的杨图是一个由方格构成的左对齐图形, 其行数
等于分拆的长度,第 𝑖行方格数等于分拆的第 𝑖个分量 𝜆𝑖.

13
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𝜆 = (4)
𝜆 = (3, 1) 𝜆 = (2, 2)

𝜆 = (3, 2, 1)

图 3.1 有效分拆的杨图示例.

任意杨图, 交换其行和列得到的新杨图称为原杨图的共轭杨图, 对应的分拆
称为原分拆的共轭分拆,记为 𝜆′,其中 𝜆′ 的第 𝑖个分量 𝜆′

𝑖 ,等于原分拆 𝜆中不小
于 𝑖的分量个数,即原杨图第 𝑖列的方格数.

𝜆 = (3, 1) 𝜆′ = (2, 1, 1)

图 3.2 共轭杨图的示例.

特别地, 若 𝜆 = 𝜆′, 则称 𝜆 为自共轭分拆, 对应的杨图为自共轭杨图. 例如,

𝜆 = (3, 2, 1)的杨图转置后仍为自身,故 𝜆 = (3, 2, 1)是自共轭分拆.

命题 3.3 (杨图与分拆的一一对应). 对任意正整数 𝑛,映射 𝜆 ↦ 杨图(𝜆)是 𝑛的所
有有效分拆集合到 𝑛对应的所有杨图集合的双射.

用 𝜆 = (𝜆1, 𝜆2, … , 𝜆𝑘)和 𝜇 = (𝜇1, 𝜇2, … , 𝜇𝑙)代表两个有效分拆,如果对所有
正整数 𝑖, 𝜇𝑖 ≤ 𝜆𝑖,则称 𝜇 是 𝜆的子分拆,记为 𝜇 ⊆ 𝜆. 当 𝜇 ⊆ 𝜆时,斜分拆定义为
𝜈 = 𝜆/𝜇, 其对应的斜杨图是 𝜆 的杨图与 𝜇 的杨图的差集. 若斜杨图中任意两个
方格可通过相邻方格 (上下左右)连接，则称为连通斜杨图. 𝜈 = (3, 2, 1)/(1, 1)和
𝜈 = (4, 3)/(2, 1)都是连通斜杨图.

𝜈 = (3, 2, 1)/(1, 1)
𝜈 = (4, 3)/(2, 1)

图 3.3 斜杨图的示例.
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斜杨图的填充是从斜杨图的方格到正整数集的映射 𝑇 ∶斜杨图(𝜈) → ℕ+. 半
标准填充 𝑇 需满足两项条件

1. 每行的数字从左到右非严格递增,即对同一行的方格 𝑇 (𝑖, 𝑗) ≤ 𝑇 (𝑖, 𝑗 + 1).

2. 每列的数字从上到下严格递增,即对同一列的方格 𝑇 (𝑖, 𝑗) < 𝑇 (𝑖 + 1, 𝑗).

半标准填充的权重定义为向量 𝛼 = (𝛼1, 𝛼2, … ),其中 𝛼𝑘表示数字 𝑘在填充中
出现的次数,记为 𝑇 ∈ SSYT(𝜈, 𝛼). 标准填充是特殊的半标准填充,除满足上述行、
列条件外,还要求填充的数字为 1, 2, … , |𝜈|(无重复). 此时数字在每行、每列均严
格递增,标准填充的集合记为 SYT(𝜈). 斜杨图 𝜈的填充映射个数称为 𝜈的填充数.

李特尔伍德-理查森填充是一类特殊的半标准填充,除满足半标准填充的行、
列条件外,还需满足反向格子置换条件,将填充的数字按列优先顺序 (从右到左读
取每一行,每行从下到上)排列得到序列 𝑤 = 𝑤1𝑤2 ⋯ 𝑤|𝜈|,对任意 1 ≤ 𝑡 ≤ |𝜈|和
任意 𝑘 ≥ 1,序列前 𝑡项中数字 𝑘 + 1的出现次数不超过数字 𝑘的出现次数,这类
填充记为 LR(𝜈/𝜆, 𝜇),其中 𝜈, 𝜆, 𝜇为整数分拆,且 |𝜈| = |𝜆| + |𝜇|.

3.1.3 对称多项式

设 GL(𝑛)是由 𝑛阶可逆方阵构成的一般线性群. 我们定义 𝑈 ∈ GL(𝑛)的对称
克罗内克幂如下. 首先构造 𝑘个 𝑈 的通常意义下的克罗内克积 𝑈 ⊗𝑘 = 𝑈 ⊗ 𝑈 ⊗
⋯ ⊗ 𝑈 . 它作用在 𝑘次张量空间 ℂ𝑛 ⊗ ℂ𝑛 ⊗ ⋯ ⊗ ℂ𝑛,维度为 𝑛𝑘. 然后引入对称群
𝑆(𝑘)的对称化算子 𝑃𝑘,

𝑃𝑘(𝑣1 ⊗ 𝑣2 ⊗ ⋯ ⊗ 𝑣𝑘) = 1
𝑘! ∑

𝜎∈𝑆(𝑘)
𝑣𝜎(1) ⊗ 𝑣𝜎(2) ⊗ ⋯ ⊗ 𝑣𝜎(𝑘)

即对所有置换取平均,保留张量的对称分量. 由此定义 𝑈 [𝑘] = 𝑃𝑘 ∘ 𝑈 ⊗𝑘 ∘ 𝑃𝑘,它是
𝑈 ⊗𝑘在对称化算子作用下的像,维度为

(
𝑛 + 𝑘 − 1

𝑘 ) = 𝑛(𝑛 + 1) … (𝑛 + 𝑘 − 1)
𝑘! ,

这一维度表示“从 𝑛个元素中进行 𝑘次有重复抽样的组合数”.

设 𝜅 = (𝑘1, 𝑘2, … , 𝑘𝑛) ⊢ 𝑘. 所有单项式 𝑧𝑘1
1 𝑧𝑘2

2 … 𝑧𝑘𝑛
𝑛 的集合构成 𝑛 × 𝑛对称矩

阵空间上解析函数空间的一个完备系，且不同次数 (即 |𝜅| ≠ 𝜅′)的单项式彼此正
交. 当变量 𝑧 = (𝑧1, 𝑧2, … , 𝑧𝑛)经 GL(𝑛)中元素 𝑈 变换为 𝑤 = 𝑧𝑈 时,诱导出 𝑧[𝑘]

到 𝑤[𝑘]的线性变换,而 𝑧[𝑘]是由标准化后的 𝑘次单项式构成的向量,其分量为

√
𝑘!

𝑘1!𝑘2! … 𝑘𝑛!𝑧𝑘1
1 𝑧𝑘2

2 … 𝑧𝑘𝑛
𝑛 ,

15



中山大学博士学位论文

并按照经典的字典序排列, 即 𝜅 < 𝜅′ 仅当存在某个索引 𝑖 (1 ≤ 𝑖 ≤ 𝑛) 使得
𝑘1 = 𝑘′

1, … , 𝑘𝑖−1 = 𝑘′
𝑖−1且 𝑘𝑖 < 𝑘′

𝑖 . 在这样的表示下,有

𝑤[𝑘] = 𝑧[𝑘]𝑈 [𝑘]

其中 𝑈 [𝑘] 正是上述定义的 𝑈 的 𝑘次对称克罗内克幂,它满足 GL(𝑛)在 𝑘次对称
多项式空间上群表示的定义,同时保持单位元和乘法封闭.

关于表示矩阵的迹,存在以下重要恒等式 [9]定理 1.4.2

命题 3.4 (华罗庚). tr ((𝑈 [2])[𝑘]) = ∑ 𝜒2𝑘1,2𝑘2,…,2𝑘𝑛(𝑈).

其中 𝜒2𝑘1,2𝑘2,…,2𝑘𝑛(𝑈)是 GL(𝑛)在所有 𝑛 × 𝑛对称矩阵集合上的不可约表示的
特征标, 即表示矩阵的迹. 这些特征标 𝜒2𝑘1,2𝑘2,…,2𝑘𝑛 可以通过下面将要引入的带
多项式的线性方程组来确定,可见外尔 [8]第 181页 .

另一方面,置换群𝑆(2𝑘)的元素自然作用于对称张量空间𝑉 = 𝑆⊗𝑘(𝑆⊗2(ℂ𝑛)),
在该空间上定义出不可约表示 𝜔2𝜅 ,同见外尔 [8]定理 4.4.F . 用𝐻 = 𝑆(2)𝑘 ⋊ 𝑆(𝑘)代
表对称群 𝑆(2)的 𝑘次幂和对称群 𝑆(𝑘)的半直积. 用 (𝜒2𝜅)

𝐺𝐿 , (𝜔2𝜅)
𝐻 分别代表

在群 𝐺𝐿(𝑛)和 𝑆(2𝑘)的子群𝐻 的作用下, 𝑉 (或 (ℂ𝑛)⊗2𝑘)上的不变子空间.

命题 3.5 (对偶原理). 𝑉 = ⨁𝜅⊢𝑘,ℓ(𝜅)≤𝑛 (𝜒2𝜅)
𝐺𝐿 ⊗ (𝜔2𝜅)

𝐻 .

3.1.4 特征标

在多元统计分析中, (𝑛+𝑘−1
𝑘 )维 𝑘次对称多项式空间中有一组常用的基,称作

带多项式. 它有多种不同的定义方式,这里我们采用文献 [19]中的定义. 为此我们
需要计算一些特别简单的情形,比如单位矩阵的特征标.

命题 3.6. 设 𝑛 ≥ 2. 定义 𝐷(𝑥1, … , 𝑥𝑛) = ∏𝑛
𝑖<𝑗(𝑥𝑖 − 𝑥𝑗). 如果 ℎ1(𝑥), … , ℎ𝑛(𝑥)为实

解析函数，则有

lim𝑥1→𝑥
𝑥𝑛→𝑥

|
|
|
|
||

ℎ1(𝑥1) … ℎ𝑛(𝑥1)
⋮ ⋱ ⋮

ℎ1(𝑥𝑛) … ℎ𝑛(𝑥𝑛)

|
|
|
|
||

𝐷(𝑥1, … , 𝑥𝑛) = (−1)
1
2 𝑛(𝑛−1)

1! 2! … (𝑛 − 1)!

|
|
|
|
|
|
||

ℎ1(𝑥) … ℎ𝑛(𝑥)
ℎ′

1(𝑥) … ℎ′
𝑛(𝑥)

⋮ ⋱ ⋮
ℎ(𝑛−1)

1 (𝑥) … ℎ(𝑛−1)
𝑛 (𝑥)

|
|
|
|
|
|
||

.

命题3.6的证明. 不失一般性,假设 𝑥1, … , 𝑥𝑛 均趋于 0. 该引理可由带余项的麦克
劳林级数推出.
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对于 𝜅 ⊢ 𝑘,引入记号

𝑀𝑘1,…,𝑘𝑛(𝑥1, … , 𝑥𝑛) =

|
|
|
|
|
|
||

𝑥𝑘1+𝑛−1
1 … 𝑥𝑘1+𝑛−1

𝑛

𝑥𝑘2+𝑛−2
1 … 𝑥𝑘2+𝑛−2

𝑛

⋮ ⋱ ⋮
𝑥𝑘𝑛

1 … 𝑥𝑘𝑛
𝑛

|
|
|
|
|
|
||

,

显然有𝑀0,…,0(𝑥1, … , 𝑥𝑛) = 𝐷(𝑥1, … , 𝑥𝑛). 定义

𝑁(𝑘1, … , 𝑘𝑛) = lim𝑥1→𝑥
𝑥𝑛→𝑥

𝑀𝑘1,…,𝑘𝑛(𝑥1, … , 𝑥𝑛)
𝐷(𝑥1, … , 𝑥𝑛) .

由引理3.6可得,

𝑁(𝑘1, … , 𝑘𝑛) = 𝐷(𝑘1 + 𝑛 − 1, 𝑘2 + 𝑛 − 2, … , 𝑘𝑛)
𝐷(𝑛 − 1, 𝑛 − 2, … , 1, 0) .

设 𝑈 是 𝑛 × 𝑛对称矩阵. 用 (𝑎)𝑘 = 𝑎(𝑎 + 1) … (𝑎 + 𝑘 − 1)代表升阶乘幂,以及
(𝑎)𝜅 = ∏𝑚

𝑖=1(𝑎 − 1
2(𝑖 − 1))𝑘𝑖 . 定义

𝐶𝜅(𝐼𝑛) =
2𝑘(1

2𝑛)𝜅

(2𝑘 − 1)!!𝜒2𝜅(1),

𝐶𝜅(𝑈) = 𝐶𝜅(𝐼𝑛)|𝑈|𝑘𝑛
∫𝑂(𝑛)

𝑛−1

∏
𝑖=1

|𝐻𝑋𝐻′(1, … , 𝑖)|𝑘𝑖−𝑘𝑖+1(𝑑𝐻).
(3.1)

这里的 (1, … , 𝑖)代表取主子矩阵, 𝜒2𝑘1,…,2𝑘𝑛(1)可由引理3.6计算得到.

命题 3.7 (线性化公式). 𝐶𝜆(𝑈) ⋅ 𝐶𝜇(𝑈) = ∑|𝜈|=|𝜆|+|𝜇| 𝑔𝜈
𝜆,𝜇𝐶𝜈(𝑈).

我们需要说明, 𝑛 元对称多项式空间存在多组基, 所以上面的系数可以通过
已知系数的基变换来得到,比如舒尔多项式的线性化系数. 一些典型的对称多项
式基包括杰克、舒尔、带多项式等,而舒尔的线性化公式是已知的,称作李特尔伍
德-理查德森系数. 具体来说,对有效分拆 𝜆 ⊢ 𝑛,定义其舒尔多项式为

𝑠𝜆(𝑥1, … , 𝑥𝑛) =
𝑀𝑘1,…,𝑘𝑛(𝑥1, … , 𝑥𝑛)

𝐷(𝑥1, … , 𝑥𝑛) .

而带多项式 𝐶𝜆(𝑥1, … , 𝑥𝑛)作为对称多项式总可以展开为舒尔多项式的线性组合

𝐶𝜆(𝑥1, … , 𝑥𝑛) = ∑𝜅
𝑃 𝜅

𝜆 𝑠𝜅(𝑥1, … , 𝑥𝑛),

其中 𝑃 = (𝑃 𝜅
𝜆 )是上三角可逆的变换矩阵. 于是乘积系数 𝑔𝜈

𝜆,𝜇 可以通过舒尔多项
式的线性化系数 𝑐𝜈

𝜆,𝜇 与矩阵 𝑃 的线性关系得到

𝑔𝜈
𝜆,𝜇 = ∑

𝛼,𝛽,𝛾
(𝑃 −1)𝛼

𝜆(𝑃 −1)𝛽
𝜇𝑐𝛾

𝛼,𝛽𝑃 𝜈
𝛾 .

17
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其中 𝑐𝜈
𝜆,𝜇 为非负整数,其值等于斜杨图 𝜈/𝜆的李特尔伍德-理查德森填充数. 弗雷

塔雷 [77]和库什纳 [78]分别对两种特殊情形,即 𝜇 = (1𝑘)和 𝜇 = (𝑘)给出了系数 𝑔𝜈
𝜆,𝜇

的递推公式. 这两种情形的舒尔形式也称作皮埃里公式.

3.2 典型群

典型域 ℜ的特征流形 ℭ是 ℜ边界上的一部分, 凡 ℜ内的解析函数都在 ℭ
上取极大绝对值,且对 ℭ上的任一点, ℜ中一定有一解析函数在该点取极大值.

华罗庚 [9]最早计算出了典型域ℜI, ℜII, ℜIII, ℜIV上的泊松核的形式,与典型
域上的泊松积分公式与调和函数的定义有着密切的联系.

命题 3.8 (典型域上的泊松核).

1. 对适合于 𝐼𝑚 − 𝑍𝑍̄′ > 0的 𝑚 × 𝑛的复矩阵 𝑍 全体ℜI,我们把它称作第 I类

典型域,其 1
2 实维数为 𝑚𝑛. 此外, ℜI上的泊松核具有以下形式

𝑃 (𝑍, 𝑈) = 1
vol (ℭI)

⋅ |𝐼 − 𝑍𝑍̄′|
𝑛

|𝐼 − 𝑍𝑈̄ ′|
2𝑛 , (3.2)

中 𝑈 过适合于 𝑈𝑈̄ ′ = 𝐼 的矩阵全体 ℭI,其实维数为 𝑚(2𝑛 − 𝑚). 特别地,当

𝑚 = 𝑛时,上式可简化为

𝑃 (𝑍, 𝑈) = 1
vol (ℭI)

⋅ |𝐼 − 𝑍𝑍̄′|
𝑛

|𝑍 − 𝑈|2𝑛 .

2. 对适合于 𝐼 − 𝑍𝑍̄ > 0的 𝑛阶复对称方阵 𝑍 全体ℜII,我们把它称作第 II类

典型域,其 1
2 实维数为

1
2𝑛(𝑛 + 1). 此外, ℜII上的泊松核具有以下形式

𝑃 (𝑍, 𝑈) = 1
vol (ℭII)

⋅ [𝐼 − 𝑍𝑍̄]
𝑛+1

2

|𝐼 − 𝑍𝑈̄|𝑛+1 , (3.3)

其中 𝑈 过适合于 𝑈𝑈̄ = 𝐼 的对称方阵全体 ℭII,其实维数为
1
2𝑛(𝑛 + 1).

3. 对适合于 𝐼 + 𝑍𝑍̄ > 0的 𝑛阶斜对称复方阵 𝑍 全体 ℜIII,我们把它称作第

III类典型域,其 1
2 实维数为

1
2𝑛(𝑛 − 1). 当 𝑛 = 2𝑘为偶数时, ℜIII上的泊松核

具有以下形式

𝑃 (𝑍, 𝑈) = 1
vol (ℭIII)

⋅ [𝐼 + 𝑍𝑍̄]
𝑛−1

2

|𝐼 + 𝑍𝑈̄|𝑛−1 , (3.4)
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其中 𝑈 过所有斜对称酉方阵构成的集合 ℭIII. 此时, ℭIII的实维数为
1
2𝑛(𝑛 −

1). 当 𝑛 = 2𝑘 + 1为奇数时,

𝑃 (𝑍, 𝑈) = 1
vol (ℭIII)

⋅ |𝐼 + 𝑍𝑍̄|
𝑛
2

|𝐼 + 𝑍𝑈̄|𝑛 , (3.5)

其中 𝑈 过所有形如 𝑉 𝐷𝑉 ′斜对称方阵全体 ℭIII,其中 𝑉 是酉方阵,

𝐷 =
⎛
⎜
⎜
⎝

𝐽𝑘

0

⎞
⎟
⎟
⎠

是标准辛矩阵 𝐽𝑘与 0的分块对角矩阵. 此时, ℭIII的实维数为
1
2𝑛(𝑛 + 1) − 1.

4. 对于第 IV类典型域ℜIV,其由适合于

|𝑧𝑧′|2 + 1 − 2 ̄𝑧𝑧′ > 0, |𝑧𝑧′| < 1

的 𝑛(> 2)维复向量 𝑧全体构成, 1
2 实维数为 𝑛,且具有泊松核

𝑃 (𝑧, 𝜉) = 1
vol (ℭIV)

⋅ ||𝑧𝑧′|2 + 1 − 2 ̄𝑧𝑧′|
𝑛
2

|(𝑧 − 𝜉)(𝑧 − 𝜉)′|𝑛 , (3.6)

其中 𝜉 过所有形如 𝑒𝑖𝜃(𝑥1, … , 𝑥𝑛) 的矢量全体 ℭIV, 且 𝑥1, … , 𝑥𝑛 是适合于

𝑥2
1 + ⋯ + 𝑥2

𝑛 = 1的实数. 于是 ℭIV的实维数为 𝑛 − 1.

对于任意在 ℭ上连续的函数 𝑓(𝑈),由泊松核定义出一个ℜ上的解析函数

𝑓(𝑍) = ∫ℭ
𝑃 (𝑍, 𝑈)𝑓(𝑈)𝑑𝑈,

称作ℜ上的调和函数. 华罗庚还证明了, ℜ上的调和函数满足拉普拉斯方程
𝑛

∑
𝛼,𝛽=1

𝑛

∑
𝑗,𝑘=1 (

𝛿𝛼𝛽 −
𝑛

∑
𝑙=1

𝑥𝑙𝛼𝑥̄𝑙𝛽)
⎛
⎜
⎜
⎝
𝛿𝑗𝑘 −

𝑛

∑
𝛾=1

𝑥𝑗𝛾 𝑥̄𝑘𝛾
⎞
⎟
⎟
⎠

𝜕2𝑢
𝜕𝑥𝑗𝛼𝜕𝑥̄𝑘𝛽

= 0.

命题 3.9 (詹姆斯 [79] ). 带多项式 𝐶𝜅(𝑈)是ℜII上的调和函数.

事实上,在满足一定的归一化条件后,比如

[tr(𝑈)]𝑘 = ∑𝜅
𝐶𝜅(𝑈),

带多项式可以由拉普拉斯方程和归一化条件唯一确定,见穆尔海德 [7]定义 7.2.1 . 詹
姆斯 [79]据此得到了带多项式的一个递推公式. 设 𝑢1, … , 𝑢𝑛是 𝑈 的特征值.

𝐶𝜅(𝑈) = ∑ 𝑐𝜅,𝜆𝑢𝜆1
1 … 𝑢𝜆𝑛

𝑛 ,
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𝑐𝜅,𝜆 = ∑
𝜆<𝜇≤𝜅

𝑐𝜅,𝜇[(𝑙𝑖 + 𝑡) − (𝑙𝑗 − 𝑡)]/(𝜌𝜅 − 𝜌𝜆)

其中和式过所有 𝜇 = (𝜆1, … , 𝜆𝑖 + 𝑡, … , 𝜆𝑗 − 𝑡, … , 𝜆𝑛), 𝑡 = 1, … , (𝜆𝑖−1 − 𝜆𝑖) ∧ (𝜆𝑗 −
𝜆𝑗+1),且 𝜌𝜅 = ∑𝑛

𝑖=1 𝑘𝑖(𝑘𝑖 − 𝑖),
在下文中,我们还需要用到典型域及其特征流形的体积,我们整理了文献 [9]和

一些常用的已知结果,这些体积公式整理在了下面的表格和推论中.

表 3.1 四类典型域及其特征流形的体积.

典型域 体积 特征流形 体积
ℜI

(𝑚−1)!…2!1!(𝑛−1)!…2!1!
(𝑚+𝑛−1)!…2!1! 𝜋𝑚𝑛 ℭI

2𝑛

(𝑚−1)!(𝑚−2)!…(𝑚−𝑛)!𝜋
𝑚𝑛− 𝑛(𝑛−1)

2

ℜII
2!4!…(2𝑛−2)!

𝑛!(𝑛+1)!(𝑛+2)!…(2𝑛−1)!𝜋
1
2 𝑛(𝑛+1) ℭII

2𝑛

1!2!…(𝑛−1)!𝜋
𝑛(𝑛+1)

2

ℜIII
2!4!…(2𝑛−4)!

(𝑛−1)!𝑛!…(2𝑛−3)!𝜋
1
2 𝑛(𝑛−1) ℭIII

(偶) 1!3!(𝑛−3)!
1!2!…(𝑛−2)!2

𝑛
2 𝜋

𝑛2
8

(奇) 1!3!(𝑛−2)!
1!2!…(𝑛−1)!2

𝑛−1
2 𝜋

(𝑛+1)2
4 −1

ℜIV
1

2𝑛−1𝑛!𝜋
𝑛 ℭIV

2
𝛤 (

𝑛
2 )

𝜋
𝑛
2

推论 3.10. vol (𝑂(𝑛)) = 2𝑛
𝑛

∏
𝑗=1

𝛤 (
𝑗
2 )

𝜋
𝑛(𝑛+1)

4 , vol (𝑈(𝑛)) = 2𝑛
𝑛

∏
𝑗=1

𝛤 (𝑗)
𝜋

𝑛(𝑛+1)
2 ,

vol (𝑆𝑝(𝑛)) = 2𝑛
𝑛

∏
𝑗=1

𝛤 (2𝑗)
𝜋𝑛(𝑛+1).

推论 3.11. vol(𝑉𝑛,𝑝) = 2𝑝
𝑝

∏
𝑗=1

𝛤 (
𝑛−𝑗+1

2 )
𝜋

𝑛𝑝
2 − 𝑝(𝑝−1)

4 (实) = 2𝑝
𝑝

∏
𝑗=1

𝛤 (𝑛−𝑗+1)
𝜋𝑛𝑝− 𝑝(𝑝−1)

2 (复),

vol(𝐺𝑛,𝑝) =

𝑛
∏
𝑗=1

𝛤 (
𝑗
2 )

𝑝
∏
𝑗=1

𝛤 (
𝑛−𝑗+1

2 )
𝜋

(𝑛−𝑝)𝑝
2 (实) = 𝛤 (𝑗)

𝑝
∏
𝑗=1

𝛤 (𝑛−𝑗+1)
𝜋(𝑛−𝑝)𝑝 (复).

3.3 计算若干积分

多元伽马函数,记作 𝛤𝑝(𝑎),通过下式定义

𝛤𝑛(𝑎) = ∫𝐴>0
etr(−𝐴)|𝐴|𝑎− 𝑛+1

2 (𝑑𝐴), (3.7)

其中 𝑎的实部,记作ℜ(𝑎) > 1
2(𝑛 − 1),且积分过所有 𝑛 × 𝑛实对称正定矩阵.

另一个与其紧密相关的函数称作多元贝塔函数,记作 𝐵𝑛(𝑎, 𝑏),定义为

𝐵𝑛(𝑎, 𝑏) = ∫0<𝑋<𝐼
|𝑋|𝑎− 𝑛+1

2 |𝐼 − 𝑋|𝑏− 𝑛+1
2 (𝑑𝑋), (3.8)
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其中ℜ(𝑎), ℜ(𝑏) > 1
2(𝑛 − 1),其积分过所有使得 𝑋, 𝐼 − 𝑋 正定的 𝑛 × 𝑛实对称矩阵

𝑋. 它与多元伽马函数通过如下等式联系

𝐵𝑛(𝑎, 𝑏) = 𝛤𝑛(𝑎)𝛤𝑛(𝑏)
𝛤𝑛(𝑎 + 𝑏) . (3.9)

首先,我们需要说明单矩阵参量超几何函数可由赫兹 [80]中的递归关系给出.

1963年,康斯坦丁 [16]通过引入带多项式求解了超几何函数所遵循的方程组,这使
得利用超几何函数的实际计算变得可行.

定义 3.1. 设 𝑋 是 𝑛 × 𝑛实对称正定矩阵. 那么

𝑝𝐹𝑞(𝑎1, … , 𝑎𝑝; 𝑏1, … , 𝑏𝑞; 𝑋) =
∞

∑
𝑘=0

∑
𝜅⊢𝑘

1
𝑘!

(𝑎1)𝜅 … (𝑎𝑝)𝜅

(𝑏1)𝜅 … (𝑏𝑞)𝜅 𝐶𝜅(𝑋). (3.10)

一些特殊的情形包括

0𝐹0(𝑋) = etr(𝑋) =
∞

∑
𝑘=0

∑
𝜅⊢𝑘

𝐶𝜅(𝑋)
𝑘! , (3.11)

1𝐹0(𝑎; 𝑋) = |𝐼 − 𝑋|−𝑎 =
∞

∑
𝑘=0

∑
𝜅⊢𝑘

(𝑎)𝜅 𝐶𝜅(𝑋)
𝑘! . (3.12)

此外,双矩阵参量的超几何函数也可以由带多项式来定义.

定义 3.2. 设 𝑋, 𝑌 分别是 𝑛 × 𝑛, 𝑚 × 𝑚实对称正定矩阵 (𝑛 ≥ 𝑚). 那么

𝑝𝐹𝑞(𝑎1, … , 𝑎𝑝; 𝑏1, … , 𝑏𝑞; 𝑋, 𝑌 ) =
∞

∑
𝑘=0

∑
𝜅⊢𝑘

1
𝑘!

(𝑎1)𝜅 … (𝑎𝑝)𝜅

(𝑏1)𝜅 … (𝑏𝑞)𝜅
𝐶𝜅(𝑋)𝐶𝜅(𝑌 )

𝐶𝜅(𝐼𝑛) . (3.13)

值得一提的是,当两个矩阵参量具有相同的大小时,如下等式成立

∫𝑂(𝑛)
𝑝𝐹𝑞(𝑎1, … , 𝑎𝑝;𝑏1, … , 𝑏𝑞; 𝑋𝐻𝑌 𝐻′)[𝑑𝐻]

=𝑝𝐹𝑞(𝑎1, … , 𝑎𝑝; 𝑏1, … , 𝑏𝑞; 𝑋, 𝑌 ),
(3.14)

其中𝑋, 𝑌 是 𝑛 × 𝑛对称矩阵,积分过所有 𝑛 × 𝑛正交矩阵 𝑂(𝑛),归一化哈尔测度定
义为 [𝑑𝐻] = 1

vol (𝑂(𝑛))
(𝑑𝐻) = Γ𝑝(𝑝/2)

2𝑝𝜋𝑝2/2 (𝑑𝐻). (推论3.10)

如果两个矩阵大小不同,类似的公式由如下引理给出.

引理 3.12 (清水康希 [20] ). 令 𝐴是 𝑛 × 𝑛, 𝐵是 𝑝 × 𝑝实对称矩阵. 如果 𝑛 ≥ 𝑝,

∫𝑂(𝑛)
0𝐹0(𝐴𝐻1𝐵𝐻′

1)[𝑑𝐻] = 0𝐹0(𝐴, 𝐵),

𝐻 = (𝐻1, 𝐻2), 其中𝐻1为 𝑛 × 𝑝,

其中积分过所有 𝑛 × 𝑛矩阵构成的正交群 𝑂(𝑛) = {𝐻 ∶ 𝐻′𝐻 = 𝐼𝑛}.
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下面这条引理将用于导出非中心分布.

引理 3.13 (詹姆斯 [14] ). 令 𝑋 是 𝑛 × 𝑝实矩阵.

∫𝑂(𝑛)
etr(𝑋𝐻′

1)(𝑑𝐻) = 0𝐹1 (
1
2𝑛; 1

4𝑋′𝑋) ,

𝐻 = (𝐻1, 𝐻2), 其中𝐻1为 𝑛 × 𝑝,

其中积分过类似引理3.12中的正交群 𝑂(𝑛).

下面这条引理用于证明主要定理4.4.

引理 3.14 (卡特里 [43] ). 令 𝐴是 𝑛 × 𝑛实对称矩阵, 𝐵 是 𝑝 × 𝑝实对称正定矩阵,且

𝑛 > 𝑝 − 1. 对任意固定的 𝑝 × 𝑝实对称正定矩阵 𝑆,我们有

∫𝑋′𝑋=𝑆
etr(𝐴𝑋𝐵𝑋′)(𝑑𝑋) = 𝜋

𝑛𝑝
2

𝛤𝑝(𝑛
2)

|𝑆|
𝑛−𝑝−1

2 0𝐹0(𝐴, 𝐵𝑆).

下面这条引理用于计算拉普拉斯变换.

引理 3.15 (康斯坦丁 [16] ). 令 𝑌 , 𝑍 是 𝑝 × 𝑝对称矩阵, 𝜅 ⊢ 𝑘且ℜ(𝑍) > 0. 那么

∫𝑋>0
etr(−𝑋𝑍)|𝑋|𝑎− 𝑛+1

2 𝐶𝜅(𝑋𝑌 )(𝑑𝑋) = (𝑎)𝜅𝛤𝑛(𝑎)|𝑍|−𝑎𝐶𝜅(𝑌 𝑍−1).

其中ℜ(𝑎) > 1
2(𝑝 − 1).

下面这条引理用于计算最大最小特征值的分布.

引理 3.16 (戴维斯 [81-82] ). 设 𝑅 > 0是 𝑚 × 𝑚矩阵. 有关 𝑝𝐹𝑞 的不完备伽马积分

∫
𝑅

0
etr(−𝐴𝑆)|𝑆|𝑐− 𝑚+1

2 𝑝𝐹𝑞 (𝑎1, … , 𝑎𝑝; 𝑏1, … , 𝑏𝑞; 𝐵𝑆) (𝑑𝑆) = |𝑅|𝑐

𝐵𝑚(𝑐, 𝑚+1
2 )

×𝑝+1𝐹𝑞+1 (𝑐, 𝑎1, … , 𝑎𝑝; 𝑐 + 1
2(𝑚 + 1), 𝑏1, … , 𝑏𝑞; −𝐴𝑅, 𝐵𝑅) ,

如果 𝑅满足 0 < 𝑅 < 𝐼 ,则有关 𝑝𝐹𝑞 的不完备贝塔积分

∫
𝑅

0
|𝑆|𝑐− 𝑚+1

2 |𝐼 − 𝑆|𝑑− 𝑚+1
2 𝑝𝐹𝑞 (𝑎1, … , 𝑎𝑝; 𝑏1, … , 𝑏𝑞; 𝐴𝑆) (𝑑𝑆) = |𝑅|𝑑

𝐵𝑚 (𝑑, 𝑚+1
2 )

×𝑝+2𝐹𝑞+1 (𝑐, −𝑑 + 𝑚 + 1
2 , 𝑎1, … , 𝑎𝑝; 𝑐 + 1

2(𝑚 + 1), 𝑏1, … , 𝑏𝑞; 𝐴, 𝐴𝑅) ,

其中ℜ(𝑐), ℜ(𝑑) > 1
2(𝑚 − 1).
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第 4章 正态矩阵与抽样分布
近些年来, 许多作者将独立同分布的多元正态总体推广到一般矩阵总体, 比

如达维徳 [83] ,科比 [84] ,古德尔 [85]讨论的矩阵正态分布,具有密度函数

𝐹𝑛,𝑝(𝑋) = 1
(2𝜋)

𝑛𝑝
2 |Φ|

𝑝
2 |Ψ |

𝑛
2

etr [−1
2Φ

−1(𝑋 − 𝑀)Ψ−1(𝑋 − 𝑀)′
] , (4.1)

其中 Φ和 Ψ 分别是 𝑛 × 𝑛和 𝑝 × 𝑝实对称正定矩阵, 𝑀 是 𝑛 × 𝑝固定矩阵,这与文
献 [53]中的向量椭球等高分布相一致. 然而, (4.1)式是用同质方差来定义的, 即总
体不同列之间具有相同的协方差, 通过适当的矩阵变换 𝑌 = Φ− 1

2 𝑋, 其形式等价
于独立样本. 这是 [53]中向量椭球等高分布的一个特例. 而椭球等高分布作为近代
多元统计分析发展的核心概念,其谱分解在 [53]中被称作是一个未解决的问题. 本
文建立了 [53]中的椭球分类与总体精度矩阵的四类张量形式 𝑇1, 𝑇1 1

2
, 𝑇2 和 𝑇3 之

间的一一对应关系. 后者直接假设精度矩阵的谱结构,对应于四类充分且必要的
随机表示,从而解决了这一困难,其中(4.1)式作为特例 𝑇3出现.

在本书中,我们用𝐴 = (𝑎1, 𝑎2, … , 𝑎𝑝)代表矩阵𝐴按列排列,用𝐴 = [a1; a2; … ; a𝑛]
代表矩阵 𝐴按行排列. 无论向量还是矩阵,一律不加粗. 以下定义均为实矩阵.

4.1 矩阵正态分布

定义 4.1 (矩阵正态分布). 𝑛 × 𝑝矩阵总体 𝑋 称作是正态矩阵,如果 vec(𝑋′)是 𝑛𝑝
维正态向量.

定理 4.1. 考虑具有一般正态条目 𝑛 × 𝑝正态矩阵总体𝑋,其关于 ℝ𝑛×𝑝上的勒贝格

测度具有概率密度函数 𝑝(𝑋). 记 𝑋 的精度矩阵为 𝛳𝑖 ∈ 𝑇𝑖, 𝑖 = 1, 11
2 , 2, 3.

𝑝(𝑋) = |𝛳1|
1
2

(2𝜋)
𝑛𝑝
2

etr
⎛
⎜
⎜
⎝
−1

2

𝑝

∑
𝑗=1

𝐴𝑗𝑗𝑋𝐵𝑗𝑗𝑋′ −
𝑝

∑
𝑗=1

𝑝

∑
𝑗′=𝑗+1

𝐴𝑗𝑗′𝑋𝐵𝑗𝑗′𝑋′
⎞
⎟
⎟
⎠

, (𝑇1)

𝑝(𝑋) =
|𝛳1 1

2
|

1
2

(2𝜋)
𝑛𝑝
2

etr
⎛
⎜
⎜
⎝
−1

2

𝑝

∑
𝑗=1

𝐴𝑗𝑗𝑋𝐵𝑗𝑗𝑋′
⎞
⎟
⎟
⎠

, (𝑇1 1
2
)

𝑝(𝑋) = |𝛳2|
1
2

(2𝜋)
𝑛𝑝
2

etr
⎛
⎜
⎜
⎝
−1

2

𝑛

∑
𝑖=1

𝑝

∑
𝑗=1

𝛾𝑖𝑗𝐴𝑖𝑋𝐵𝑗𝑋′
⎞
⎟
⎟
⎠

, (𝑇2)

𝑝(𝑋) = 1
(2𝜋)

𝑛𝑝
2 |Φ|

𝑝
2 |Ψ |

𝑛
2

etr (−1
2Φ

−1𝑋Ψ−1𝑋′
) . (𝑇3)

23



中山大学博士学位论文

定理4.1的证明. 由 tr(𝐴𝑋𝐵𝑋′) = vec(𝑋′)′(𝐴 ⊗ 𝐵) vec(𝑋′)和定义直接得到.

定理 4.2. 𝑇1 ⊃ 𝑇1 1
2

⊃ 𝑇2 ⊃ 𝑇3. 特别地, 𝑇3即(4.1).

定理4.2的证明. 表2.1的直接推论.

定理 4.3. 考虑 𝑛 × 𝑝矩阵正态总体 𝑋 ∼ 𝑇𝑖, 𝑖 = 1, 11
2 , 2, 3. 𝑋′𝑋 以概率 1是正定的

当且仅当 𝑛 > 𝑝 − 1.

定理4.3的证明. 以下思路来自迪克斯特拉 [86] . 只需要证明 𝑋′𝑋 是以概率 1非退
化的当且仅当 𝑛 > 𝑝 − 1. 令 𝑥1, … , 𝑥𝑝是𝑋的列向量,而 x1, … , x𝑛是𝑋的行向量.

𝑷 (𝑥1, … , 𝑥𝑝线性相关)

≤
𝑝

∑
𝑖=1

𝑷 (𝑥𝑖是𝑥1, … , 𝑥𝑖−1, 𝑥𝑖+1, 𝑥𝑝的线性组合)

=
𝑝

∑
𝑖=1

𝑷
⎛
⎜
⎜
⎝
存在𝑏1, … , 𝑏𝑖−1, 𝑏𝑖+1, 𝑏𝑝使得𝑥𝑖 = ∑

𝑖′≠𝑖
𝑏𝑖′𝑥𝑖′

⎞
⎟
⎟
⎠

≤
𝑝

∑
𝑗=1

min
𝑖=1,2,…,𝑛

𝑷
⎛
⎜
⎜
⎝
存在𝑏1, … , 𝑏𝑗−1, 𝑏𝑗+1, 𝑏𝑝使得𝑥𝑖𝑗 = ∑

𝑗′≠𝑗
𝑏𝑗′𝑥𝑖𝑗′

⎞
⎟
⎟
⎠

≤𝑝 ⋅ min
𝑖=1,2,…,𝑛

𝑷 (存在列向量𝑏使得x𝑖𝑏′ = 0) = 𝑝 ⋅ 0 = 0

其中在最后一行中, 我们用到了事实 x𝑖 具有独立分量, 从而 𝑝 维正态分布落在
𝑝 − 1维子空间中的概率为零.

4.2 积矩分布

卡特里 [43] ,坎茨,约翰逊和鲍伊德 [44] ,马泰 [48] ,还有卡罗洛佩拉,冈萨雷斯-

法里亚斯和巴拉克里希南 [51]分别研究了(4.1)式对应的矩阵正态总体的样本方差
与样本协方差的分布,进而得到了相应的积矩阵分布. 通过引入矩阵参量广义超
几何函数 𝑝𝐹𝑞,卡特里 [43]于 1966年严格计算了来自总体𝑁𝑛,𝑝(0,Φ,Ψ )的同质二次
型 𝑆 = 𝑋′𝑋 的联合概率密度,

𝑉𝑛,𝑝(𝑆) =
etr (−𝑞−1Ψ−1𝑆) |𝑆|

𝑛−𝑝−1
2

2
𝑛𝑝
2 𝛤𝑝(𝑛

2)|Φ|
𝑝
2 |Ψ |

𝑛
2

0𝐹0 (𝐼 − 1
2𝑞Φ−1, 𝑞−1Ψ−1𝑆) , (4.2)

这里的 𝑞 是任意正常数. 当 Φ = 𝐼 时, (4.2)式就退化成(1.1)式 (𝑀 = 0). 尽管卡
塔里得到了中心情形 𝑁𝑛,𝑝(0,Φ,Ψ )的联合密度,但关于非中心总体 𝑁𝑛,𝑝(𝑀,Φ,Ψ ),
𝑀 ≠ 0的密度,相关结果仍非常匮乏.

24



第 4章 正态矩阵与抽样分布

另一方面, (4.1)式是用同质方差来定义的, 即总体不同列之间具有相同的协
方差,通过适当的矩阵变换 𝑌 = Φ− 1

2 𝑋 后,其形式等价于独立样本. 马泰 [48]曾利
用矩母函数的累积量来考察形如 𝑦1𝐴11𝑦1, 𝑦2𝐴22𝑦2 和 𝑦1𝐴12𝑦2 的方差异质二次型
的独立性,其中 𝑦𝑖, 𝑖 = 1, 2是 𝑛维独立正态向量,且 𝐴′

11 = 𝐴11, 𝐴′
22 = 𝐴22 是实对

称矩阵. 然而,马泰的结果仅考虑了两样本的情况,当变量数目 > 2时,有关结果
几乎空白. 为了研究马泰定义的异质二次型的联合密度,我们同时考虑 1

2𝑝(𝑝 + 1)
个二次型的联合分布.

定义 4.2 (积矩分布). (𝑋 + 𝑀)′(𝑋 + 𝑀)称作是积矩,其中𝑋 ∼ 𝑇𝑖, 𝑖 = 1, 11
2 , 2, 3是

正态矩阵, 𝑀 是固定矩阵. 特别地,当 𝑋 ∼ 𝑁𝑛,𝑝(𝑀, 𝐼𝑛, 𝛹), 𝑋′𝑋 服从非中心威沙
特分布(1.1).

本节的主要目标是证明积矩分布具有类似威沙特分布(1.1)的密度.

定理 4.4. 设 𝑋 ∈ 𝑇1 的矩形坐标为 𝐵 = (𝑏1, 𝑏2, … , 𝑏𝑝). 假设 𝑝 × 𝑝 实对称矩阵
𝑈 = (𝑢𝑖𝑗)满足 𝑢𝑖𝑗 = tr(𝐴𝑖𝑗)且其对角线上的元素皆为正,即 𝑢𝑖𝑖 > 0 (𝑖 = 1, 2, … , 𝑝).
那么当 𝑛 > 𝑝 − 1时, 𝑆 = 𝑋′𝑋 的概率密度函数仅依赖于 𝑇 = (𝑡𝑖𝑗), 𝑡𝑖𝑗 = tr(𝐵𝑖𝑗𝑆),

|𝛳1|
1
2

2
𝑛𝑝
2 𝛤𝑝(𝑛

2)
etr (−1

2𝑈𝑇 ) |𝑇 |
𝑛−𝑝−1

2 , 当𝑀 = 0;

× etr (−1
2Ω) 0𝐹1 (

𝑛
2; 1

4∆𝑇 ) , 当𝑀 ≠ 0;

(4.3)

其中 Ω = ∑𝑝
𝑖,𝑗=1 𝐵′

𝑖𝑗𝑀′𝐴𝑖𝑗‘𝑀 和 ∆ = ∑𝑝
𝑖,𝑗,𝑘,𝑙=1 𝐵′

𝑖𝑗𝑀′𝐴′
𝑖𝑗𝐴𝑘𝑙𝑀𝐵𝑘𝑙.

推论 4.5. (4.2)式对任意 𝑛 > 𝑝 − 1成立.

注 4.1. 定理4.4的中心部分 (𝑀 = 0)推广了卡特里的结果 (推论4.5),即(4.2)式至
形如(1.3)式的 1

2𝑝(𝑝 + 1)个正态二次型.

注 4.2. 定理4.4的中心部分 (𝑀 = 0)与(4.2)式实际上是等价的. 通过积分, 1
2𝑝(𝑝 +

1) 个二次型 𝑦𝑖𝐴𝑖𝑗𝑦𝑗(𝑖 ≤ 𝑗), 其中 𝐴𝑖𝑗 = 𝐴′
𝑗𝑖 可以化简为(4.2)式. 反过来, 如果定

理4.4成立,那么(4.2)式对任意 𝑛 > 𝑝 − 1成立.

定理4.4的证明组织如下. 首先,我们将根据中心部分和推论4.5的等价性来证
明定理4.4的非中心部分, 然后再证明等价性. 由于推论4.5借助于命题4.3是已知
的,因此定理4.4的证明就完成了.

定理4.4的证明. 首先假设定理4.4的中心部分对任意 𝑛 > 𝑝 − 1成立. 对矩阵分解
𝑋 = 𝐻𝑍,其中 𝑍 是上三角矩阵且𝐻′𝐻 = 𝐼𝑝. 由定理2.4,

𝑑𝑋 = 2−𝑝|𝑍′𝑍|
𝑛−𝑝−1

2 𝑑(𝑍′𝑍) ⋅ (𝑑𝐾), 其中𝐾 = (𝐻, 𝐻⟂) ∈ 𝑂(𝑛).
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因此, (4.1)式能够重写为

etr (−1
2Ω) ∫𝑂(𝑛)

etr
⎛
⎜
⎜
⎝
−1

2

𝑝

∑
𝑖,𝑗=1

(𝐴𝑖𝑗𝑀𝐵𝑖𝑗)𝑍′𝐻′
⎞
⎟
⎟
⎠

(𝑑𝐾)

= etr (−1
2Ω) 0𝐹1

⎛
⎜
⎜
⎝

𝑛
2; 1

4

𝑝

∑
𝑖,𝑗,𝑘,𝑙=1

(𝐵′
𝑖𝑗𝑀′𝐴′

𝑖𝑗𝐴𝑘𝑙𝑀𝐵𝑘𝑙)𝑍′𝑍
⎞
⎟
⎟
⎠

.

因此,如果中心部分成立,则根据引理3.13定理4.4成立.

但是注意到,根据注记4.2,中心部分也可以由推论4.5和命题4.3得到,只需要
对 𝑌 = 𝑋𝐵−1 = (𝑦1, 𝑦2 … , 𝑦𝑝)的 1

2𝑝(𝑝 + 1)个二次型,

𝑦′
1𝐴11𝑦1, 𝑦′

1𝐴12𝑦2, … , 𝑦′
1𝐴1𝑝𝑦𝑝,

𝑦′
2𝐴22𝑦2, … , 𝑦′

2𝐴2𝑝𝑦𝑝,

⋮

𝑦′
𝑝𝐴𝑝𝑝𝑦𝑝,

逐项积分,其中 𝑦′
𝑖 𝐴𝑖𝑗𝑦𝑗 对概率密度函数的贡献为

0𝐹0 (𝐼 −
𝑞𝑖𝑗
2 𝐴𝑖𝑗 , 𝑞−1

𝑖𝑗 𝑦𝑖𝑦′
𝑗) = 0𝐹0 (𝐼 −

𝑞𝑖𝑗
2 𝐴𝑖𝑗 , 𝑞−1

𝑖𝑗 𝑦′
𝑗𝑦𝑖) .

这里我们发现 𝑦′
𝑗𝑦𝑖 = 𝑡𝑖𝑗 = tr(𝐵𝑖𝑗𝑆),于是根据以下超几何函数的性质

0𝐹0(𝑋, 𝑐𝑌 ) = 0𝐹0(𝑐𝑋, 𝑌 )

0𝐹0(𝑋, 𝐼) = 0𝐹0(𝑋) = etr(𝑋),

所有包含 𝑞𝑖𝑗 的项都互相抵消. 这便完成了定理4.4的证明.

推论4.5的证明. 令 𝐴𝑖𝑗 = 𝛽𝑗𝛿𝑖𝑗Φ
−1 使得 Ψ−1 = ∑𝑝

𝑗=1 𝛽𝑗𝑏𝑗𝑏′
𝑗 ,其中 𝛽𝑗 , 𝑏𝑗 是 Ψ−1 的

特征根与特征向量. 那么 𝑢𝑖𝑗 = 𝛽𝑗𝛿𝑖𝑗 tr(Φ−1)以及

etr (−1
2𝑈𝑇 ) = etr

⎛
⎜
⎜
⎝
−1

2 tr(Φ−1)
𝑝

∑
𝑗=1

𝛽𝑗𝑡𝑗𝑗
⎞
⎟
⎟
⎠

= etr (−1
2Φ

−1 tr(Ψ−1𝑆))

= etr (−𝑞−1Ψ−1𝑆) 0𝐹0 (𝐼 − 𝑞
2Φ

−1, 𝑞−1Ψ−1𝑆) ,

其中在证明第二个等式时我们用到了定义 𝑇 = 𝐵𝑆𝐵′.
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4.2.1 积矩系数的矩母函数

定理 4.6. 假设同定理4.4. 𝑆 = (𝑠𝑖𝑗)的矩母函数为

𝑬 exp
(∑

𝑖≤𝑗
𝛾𝑖𝑗𝑠𝑖𝑗)

= |𝛳1|
1
2 |𝑈|− 𝑛

2 1𝐹0 (
𝑛
2; 𝑊 ) , 当𝑀 = 0;

× etr (−1
2Ω) etr (

1
2∆𝑈 −1(𝐼 − 𝑊 )−1

) , 当𝑀 ≠ 0;
(4.4)

其中𝑊 = 𝑈 − 1
2 𝐵𝑅𝐵′𝑈 − 1

2 , 2𝑅 = Γ + 𝐼 ,且 Γ = (𝛾𝑖𝑗)对称.

定理4.6的证明. 假设定理4.4对任意 𝑛 > 𝑝 − 1成立. 为了证明定理4.6对任意 𝑛 >
𝑝 − 1成立,考察变换 𝑆 ↦ 𝑇 = 𝐵′𝑆𝐵,此时矩母函数应为

|𝛳1|
1
2

2
𝑛𝑝
2 𝛤𝑝(𝑛

2) ∫𝑇 >0
etr (−1

2(𝑈 − 𝐵𝑅𝐵′)𝑇 ) |𝑇 |
𝑛−𝑝−1

2

× etr (−1
2Ω) 0𝐹1 (

𝑛
2; 1

4∆𝑇 ) (𝑑𝑇 ).

根据 0𝐹1的定义和引理3.15,上述积分化简为

|𝛳1|
1
2 |𝑈 − 𝐵𝑅𝐵′|− 𝑛

2 etr (−1
2Ω) etr (

1
2∆(𝑈 − 𝐵𝑅𝐵′)−1

) .

令𝑊 = 𝑈 − 1
2 𝐵𝑅𝐵′𝑈 − 1

2 并注意到 1𝐹0 (𝑎; 𝑊 ) = |𝐼 − 𝑊 |−𝑎,即得(4.4)式.

推论 4.7. (4.2)式的矩母函数为

|Φ|− 𝑝
2 |𝑊 |− 𝑛

2 1𝐹0 (
𝑛
2; 𝑞𝐼 − 1

2Φ
−1, 𝑊 −1

) ,

其中𝑊 = 𝐼 − 𝑞Ψ
1
2 𝑅Ψ

1
2 , 2𝑅 = Γ + 𝐼 ,且 Γ = (𝛾𝑖𝑗)对称.

证明见卡特里 [43] . 因此, 定理4.6以更紧凑的形式概括了正态二次形式的经
典结果,其中 1𝐹0 项类似于威沙特矩母函数. 关于确定矩母函数中指数 𝑛的容许
范围留在本节末尾讨论.

4.2.2 积矩系数的特征根分布

定理 4.8. 假设同定理4.4. 𝑆 的特征根 𝑙1, 𝑙2, … , 𝑙𝑝的联合分布为

𝜋
𝑝2
2 |𝛳1|

1
2

2
𝑛𝑝
2 𝛤𝑝(𝑛

2)𝛤𝑝(𝑝
2)

𝑝

∏
𝑖<𝑗

(𝑙𝑖 − 𝑙𝑗)
𝑝

∏
𝑖=1

(𝑙𝑖)
𝑛−𝑝−1

2 0𝐹0 (−1
2𝑈, 𝐿) , 当𝑀 = 0;

× etr (−1
2𝛺) 0𝐹1 (

𝑛
2; 1

4𝛥, 𝐿) , 当𝑀 ≠ 0;

其中 𝐿 = diag(𝑙𝑖), 𝑙1 > 𝑙2 > ⋯ > 𝑙𝑝 > 0;别处为零.
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关于特征根的联合分布,存在以下重要结论 [7]定理 3.2.17 .

命题 4.9. 设 𝑆 是 𝑝 × 𝑝实对称正定矩阵,密度为 𝑓(𝑆). 则 𝑆 的特征根 𝑙1, 𝑙2, … , 𝑙𝑝

的联合分布为

𝜋𝑝2/2

𝛤𝑝(𝑝
2)

𝑝

∏
𝑖<𝑗

(𝑙𝑖 − 𝑙𝑗) ∫𝑂(𝑝)
𝑓(𝐻𝐿𝐻′)(𝑑𝐻),

其中 𝐿 = diag(𝑙1, … , 𝑙𝑝), 𝑙1 > 𝑙2 > ⋯ > 𝑙𝑝 > 0;别处为零.

定理4.8的证明. 根据命题4.3和定理4.4, 分解矩阵 𝑋 = 𝐻𝑍, 其中 𝑍 是上三角矩
阵且𝐻′𝐻 = 𝐼𝑝,将𝐻 扩充为 𝐾 = (𝐻, 𝐻⟂) ∈ 𝑂(𝑛),我们有

etr (−1
2𝛺) ∫𝑂(𝑝)

etr
⎛
⎜
⎜
⎝
−1

2

𝑝

∑
𝑖,𝑗=1

(𝐴𝑖𝑗𝑀𝐵𝑖𝑗)𝑍′𝐻′
⎞
⎟
⎟
⎠

(𝑑𝐾)

= etr (−1
2𝛺) 0𝐹1

⎛
⎜
⎜
⎝

𝑛
2; 1

4

𝑝

∑
𝑖,𝑗,𝑘,𝑙=1

(𝐵′
𝑖𝑗𝑀′𝐴′

𝑖𝑗𝐴𝑘𝑙𝑀𝐵𝑘𝑙)𝑍′𝑍
⎞
⎟
⎟
⎠

.

非中心部分的证明于是由引理3.13得到. 而中心部分则是引理3.12的直接推论.

推论 4.10. (4.2)式的的特征根 𝑙1, 𝑙2, … , 𝑙𝑝的联合分布为

𝜋
𝑝2
2

2
𝑛𝑝
2 𝛤𝑝(𝑛

2)𝛤𝑝(𝑝
2)|Φ|

𝑝
2 |Ψ |

𝑛
2

𝑝

∏
𝑖=1

(𝑙𝑖)
𝑛−𝑝−1

2

𝑝

∏
𝑖<𝑗

(𝑙𝑖 − 𝑙𝑗)0𝐹0 (−1
2Φ

−1,Ψ−1𝐿)

其中 𝐿 = diag(𝑙𝑖), 𝑙1 > 𝑙2 > ⋯ > 𝑙𝑝 > 0;别处为零.

推论4.10的证明. 根据前述引理, 引入 𝐾 = [𝐻1, 𝐻2] ∈ 𝑂(𝑛), 其中 𝐻1 是满足
𝑋𝐻 = 𝐻1𝑄的 𝑛 × 𝑝矩阵,其中 𝑄上三角. 根据引理3.13,我们有

𝑝(𝐿) ∝ ∫𝑂(𝑛)
(𝑑𝐾) ∫𝑄′𝑄=𝐿

etr (−1
2Φ

−1𝐻1𝑄Ψ−1𝑄′𝐻′
1) (𝑑𝑄)

∝ ∫𝑂(𝑛)
0𝐹0 (−1

2𝐻′
1Φ

−1𝐻1,Ψ−1𝐿) (𝑑𝐾).
(4.5)

那么乘上首项系数和范德蒙德行列式∏𝑝
𝑖<𝑗(𝑙𝑖 − 𝑙𝑗)之后即得推论4.10.

为了说明这与(1.1)式的积分仅当 Φ = 𝐼 时等价, 考虑(4.1)式关于 𝑋′𝑋 =
𝐻𝐿𝐻′和𝐻 的积分. 事实上,通过引入 𝑍 = 𝑋𝐻 ,根据引理3.14,

𝑝(𝐿) ∝ ∫𝑂(𝑝)
(𝑑𝐻) ∫𝑍′𝑍=𝐿

etr (−1
2Φ

−1𝑍𝐻Ψ−1𝐻′𝑍′
) (𝑑𝑍)

∝ |𝐿|
𝑛−𝑝−1

2 ∫𝑂(𝑝)
0𝐹0 (−1

2Φ
−1, 𝐻Ψ−1𝐻′𝐿) (𝑑𝐻).
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比较首项系数,这简化为詹姆斯 [15]关于威沙特分布特征根分布的经典结果,

𝜋
𝑝2
2

2
𝑛𝑝
2 𝛤𝑝(𝑛

2)𝛤𝑝(𝑝
2)|Ψ |

𝑛
2

𝑝

∏
𝑖=1

(𝑙𝑖)
𝑛−𝑝−1

2

𝑝

∏
𝑖<𝑗

(𝑙𝑖 − 𝑙𝑗)0𝐹0 (−1
2Ψ

−1, 𝐿) , (4.6)

其中 𝐿 = diag(𝑙1, 𝑙2, … , 𝑙𝑝), 𝑙1 > 𝑙2 > ⋯ > 𝑙𝑝;别处为零.

4.2.3 𝑝 = 3情形时的例子

以下三个例子均是定理4.4在 𝑝 = 3情形的特例.

例 4.1 (𝑋 具有独立行). 设采样总体的概率密度为

𝑝(𝑋) =
∏𝑛

𝑟=1 |𝐵𝑟|
1
2

(2𝜋)
3𝑛
2

exp
(

−1
2

𝑛

∑
𝑟=1

x′
𝑟𝐵𝑟x𝑟)

. (4.7)

其中 𝐵𝑟是 x𝑟 = (𝑥𝑟1, 𝑥𝑟2, 𝑥𝑟3)的 3 × 3协方差矩阵的逆, 𝑋 = [x1; x2; … ; x𝑛]是具有
独立正态分布行的矩阵.

考虑从样本中得到的如下统计量

𝑛𝑥̄1 =
𝑛

∑
𝑟=1

𝑥𝑟1, 𝑛𝑥̄2 =
𝑛

∑
𝑟=1

𝑥𝑟2, 𝑛𝑥̄3 =
𝑛

∑
𝑟=1

𝑥𝑟3,

𝑛𝑠2
1 =

𝑛

∑
𝑟=1

(𝑥𝑟1 − 𝑥̄1)2, 𝑛𝑠2
2 =

𝑛

∑
𝑟=1

(𝑥𝑟2 − 𝑥̄2)2, 𝑛𝑠2
3 =

𝑛

∑
𝑟=1

(𝑥𝑟3 − 𝑥̄3)2,

𝑛𝑟𝑖𝑗𝑠𝑖𝑠𝑗 =
𝑛

∑
𝑟=1

(𝑥𝑟𝑖 − 𝑥̄𝑖)(𝑥𝑟𝑗 − 𝑥̄𝑗), (𝑖, 𝑗 = 1, 2, 3).

为了变换体积元为 𝑥̄1, 𝑥̄2, 𝑥̄3, 𝑠1, 𝑠2, 𝑠3,根据 [76]中的已知结果,我们通过引入三个
辅助角 𝜃11, 𝜃12 和 𝜃22 来计算变换对体积元的贡献,它们代表 3 × 3正交群的生成
元,我们具有如下表达式

𝑑𝑝 =
𝑛

3(𝑛−2)
2 ∏𝑛

𝑟=1 |𝐵𝑟|
1
2

2
3(𝑛−1)

2 𝜋
3
2 𝛤 (𝑛−1

2 )𝛤 (𝑛−2
2 )𝛤 (𝑛−3

2 )
exp

(
−1

2

𝑛

∑
𝑟=1

x′
𝑟𝐵𝑟x𝑟)

𝑠𝑛−2
1 𝑠𝑛−2

2 𝑠𝑛−2
3

× sin𝑛−3 𝜃11 sin𝑛−3 𝜃12 sin𝑛−4 𝜃22𝑑𝑥̄1𝑑𝑥̄2𝑑𝑥̄3𝑑𝑠1𝑑𝑠2𝑑𝑠3𝑑𝜃11𝑑𝜃12𝑑𝜃22.

(4.8)

通过对(4.8)中的 𝜃11, 𝜃12, 𝜃22 积分,我们得到了当 𝐵1 = 𝐵2 = ⋯ = 𝐵 时三个
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样本方差和三个积矩系数联合分布的对称表达式

𝐴 = |𝐵11|/|𝐵|, 𝐵 = |𝐵22|/|𝐵|, 𝐶 = |𝐵33|/|𝐵|,

𝐹 = |𝐵12|/|𝐵|, 𝐺 = |𝐵13|/|𝐵|, 𝐻 = |𝐵23|/|𝐵|,

𝑎 = 𝑠2
1, 𝑏 = 𝑠2

2, 𝑐 = 𝑠2
3, 𝑓 = 𝑠1𝑠2 cos 𝜃11, 𝑔 = 𝑠1𝑠3 cos 𝜃12,

ℎ = 𝑠2𝑠3(sin 𝜃11 sin 𝜃12 cos 𝜃22 + cos 𝜃11 cos 𝜃12),

𝑑𝑝 = 1
𝜋

3
2 𝛤 (𝑛−1

2 )𝛤 (𝑛−2
2 )𝛤 (𝑛−3

2 )
⋅

|
|
|
|
||

𝐴 𝐹 𝐺
𝐹 𝐵 𝐻
𝐺 𝐻 𝐶

|
|
|
|
||

𝑛−1
2

⋅

|
|
|
|
||

𝑎 𝑓 𝑔
𝑓 𝑏 ℎ
𝑔 ℎ 𝑐

|
|
|
|
||

𝑛−5
2

× 𝑒−𝐴𝑎−𝐵𝑏−𝐶𝑐−2𝐻ℎ−2𝐺𝑔−8𝐹 𝑓 𝑑𝑎𝑑𝑏𝑑𝑐𝑑𝑓𝑑𝑔𝑑ℎ,

(4.9)

其中 𝐵𝑖𝑗 是 𝐵的 (𝑖, 𝑗)余子式,乘以公共的常数因子 (𝑛/2).

图 4.1 威沙特的几何推导中使用的辅助角 𝜃11, 𝜃12, 𝜃22.

事实上, 威沙特 [40]首先根据 1925年之前费希尔, 皮尔逊和罗马诺夫斯基的
著名结果推导得到了公式(4.9). 在这里,我们利用津村善郎 [76]的矩阵分解技术来
得出了完全相同的结果.

例 4.2 (𝑋 具有独立列). 与(4.7)相比, 当总体具有独立列时积矩分布的计算有所
不同. 例如,新的偏相关系数和多元相关系数以及回归系数需要估计. 因此,如果
𝑥1, 𝑥2, 𝑥3 是独立的列, 并且总体中的条目是联合正态分布的, 则总体的一个简化
的形式可以写作

𝑝(𝑋) =
|𝛳1 1

2
|

1
2

(2𝜋)
𝑛
2

exp (−1
2𝑥′

1𝐴11𝑥1 − 1
2𝑥′

2𝐴22𝑥2 − 1
2𝑥′

3𝐴33𝑥3) , (4.10)

其中 𝛳1 1
2

= 𝐴11 ⊗ 𝐸11 + 𝐴22 ⊗ 𝐸22 + 𝐴33 ⊗ 𝐸33, 3 × 3矩阵 𝐸𝑖𝑗 除开 (𝑖, 𝑗)元素为一
外其余全为零; 𝑛 × 𝑛矩阵 𝐴11(类似的, 𝐴22, 𝐴33)是变量 𝑥1的协方差矩阵的逆 (类
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似的, 𝑥2, 𝑥3). 因此,通过引入任意常数 𝑞 > 0, (4.10)能够重新写作,

𝑝(𝑋) =
|𝛳1 1

2
|

1
2

(2𝜋)
3𝑛
2

exp
⎡⎢⎢⎣
−

3

∑
𝑖=1

𝑞−1𝑥′
𝑖 𝑥𝑖 +

3

∑
𝑖=1

𝑞−1𝑥′
𝑖 (𝐼 − 𝑞

2𝐴𝑖𝑖) 𝑥𝑖
⎤⎥⎥⎦

. (4.11)

根据引理3.14,我们能够积去指数中的讨厌参数 𝑞−1𝑥′
1(𝐼 − 𝑞

2𝐴11)𝑥1(类似的, 𝑥2, 𝑥3),

etr(𝑋) = 0𝐹0(𝑋),

∫𝑂(𝑛)
0𝐹0(𝐴𝐻1𝐵𝐻′

1)(𝑑𝐻) = 0𝐹0(𝐴, 𝐵),

𝐻 = [𝐻1, 𝐻2], 且𝐻1为𝑛 × 3,

∫𝑋′𝑋=𝑆
etr(𝐴𝑋𝐵𝑋′)(𝑑𝑋) = 𝜋𝑛

𝛤3(𝑛
2)

|𝑆|
𝑛−4

2 0𝐹0(𝐴, 𝐵𝑆),

(4.12)

这一结果,通过积分 𝑞−1𝑋′(𝐼 − 𝑞
2𝐴)𝑋 (假设 𝐴11 = 𝐴22 = 𝐴33 = 𝐴),具有简洁的矩

阵表达式,

𝑝(𝑋′𝑋) = |𝐴|
3
2

2
3𝑛
2 𝛤3(𝑛

2)
etr (−𝑞−1𝑋′𝑋) |𝑋′𝑋|

𝑛−3
2 0𝐹0 (𝐼 − 𝑞

2𝐴, 𝑞−1𝑋′𝑋) .

如果 𝐴11 ≠ 𝐴22(或 ≠ 𝐴33),我们仍令 𝑠11 = 𝑥′
1𝑥1, 𝑠22 = 𝑥′

2𝑥2, 𝑠33 = 𝑥′
3𝑥3,其余

𝑠12, 𝑠13, 𝑠23类似. 因此,对任意 𝑞11, 𝑞22, 𝑞33 > 0和 𝑆 = (𝑠𝑖𝑗),结果变为

𝑝(𝑆) =
|𝛳1 1

2
|

1
2

2
3𝑛
2 𝛤3(𝑛

2)
exp

⎛
⎜
⎜
⎝
−

3

∑
𝑖=1

𝑞−1
𝑖𝑖 𝑠𝑖𝑖

⎞
⎟
⎟
⎠

|𝑆|
𝑛−4

2

3

∏
𝑖=1

0𝐹0 (𝐼 − 𝑞𝑖𝑖
2 𝐴𝑖𝑖, 𝑞−1

𝑖𝑖 𝑠𝑖𝑖)

=
|𝛳1 1

2
|

1
2

2
3𝑛
2 𝛤3(𝑛

2)
etr (−1

2𝐴11𝑠11 − 1
2𝐴22𝑠22 − 1

2𝐴33𝑠33) |𝑆|
𝑛−4

2 ,

(4.13)

(4.13)式不该与(4.9)式混淆. 因此, 假设每列都是联合正态的, 并且假设总体密度
为 (4.10),可以显式计算出矩阵正态总体的积矩系数 𝑠11, 𝑠22, 𝑠33 的联合概率密度.

另外指出,这一方法也适用于更一般的 𝑇1分布.

例 4.3 (𝑋具有一般正态条目). 假设我们没有正态总体的先验知识,只知道矩阵总
体中的每个条目都是正态分布的. 在这种情况下,我们需要做一些假设来减少未
知参数数量. 例如,假设我们的𝑁 = 𝑛𝑝个样本值来自𝑁 个不同的正态总体,则存
在至少 𝑁 个方差和 1

2𝑁(𝑁 − 1)个两两相关系数或回归系数需要估计,因此未知
参数数量为 1

2𝑁(𝑁 + 1),即近似 𝑂(𝑁2). 倘若不减少参数数量,就不可能得出任何
有意义的结论. 从表4.1中,我们可以看到在四个矩阵正态总体 𝑇1, 𝑇1 1

2
, 𝑇2和 𝑇3中

自由度显著降低,其等价于命题4.2所述的精度矩阵的四种嵌套类型的谱分解.
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表 4.1 四类常见的矩阵正态分布 𝑇1, 𝑇1 1
2
, 𝑇2, 𝑇3

类型 −2 log(M.G.F.) D.O.F. 类别 M.G.F.

𝑇1 ∑𝑝
𝑗=1 ∑𝑝

𝑗′=1 𝑡′
𝑗𝐴𝑗𝑗′𝑡𝑗′

1
2𝑛(𝑛 − 1)𝑝2 + 𝑛𝑝 LE 𝜙(𝑡′

𝑖 𝐴𝑖𝑗𝑡𝑗)
𝑇1 1

2
∑𝑝

𝑗=1 𝑡′
𝑗𝐴𝑗𝑗𝑡𝑗

1
2𝑛(𝑛 + 1)𝑝 ME 𝜙(𝑡′

𝑖 𝐴𝑖𝑖𝑡𝑖)

𝑇2 ∑𝑛
𝑖=1 ∑𝑝

𝑗=1 𝛾𝑖𝑗𝑡′
𝑗𝐴𝑖𝑡𝑗 𝑛𝑝 ME 𝜙(𝑡′

𝑖 𝐴𝑖𝑖𝑡𝑖)
𝑇3 ∑𝑛

𝑖=1 ∑𝑝
𝑗=1 𝛼𝑖𝛽𝑗𝑡′

𝑗𝐴𝑖𝑡𝑗 𝑛 + 𝑝 VE 𝜙(∑ 𝑡′
𝑖 𝐴𝑖𝑖𝑡𝑖)

其中 𝑇 = (𝑡1, … , 𝑡𝑛)和 𝑋 = (𝑥1, … , 𝑥𝑛)都是 𝑛 × 𝑝矩阵, 𝐴′
𝑖𝑗 = 𝐴𝑗𝑖,且矩母函数

M.G.F.定义为 𝑬 exp(∑ 𝑡𝑟𝑖𝑥𝑟𝑖). 此处的记号 LE, ME, VE与 [53]中略有不同.

虽然以上定理4.4, 4.6, 4.8只考虑了实值分布的情形,但复值分布的结果也应
当是类似的. 而且, 𝑇1 1

2
, 𝑇2, 𝑇3情形的结果亦可作为推论. 特别地,定理4.4的 𝑇3情

形推广了卡特里 [43]的已知结果, 并且未在中心情形引入双矩阵参量超几何函数
0𝐹0和讨厌参数 𝑞𝑖𝑗 > 0. 关于积矩分布,我们提出以下三个问题供读者思考.

问题 4.11. 能否构造一个 3 × 3左椭球分布并非 𝑇1 1
2
? [提示: 任意两个 2 × 2对称

矩阵都可交换,所以考虑 3 × 3矩阵.]

问题 4.12. 能否使用数学归纳法证明定理4.4? [提示: 结合引理3.14和文献 [87] .]

问题 4.13. 能否证明(4.4)式 (𝑀 = 0)定义了一个矩母函数当且仅当 𝑛 ∈ {0, 1, 2, … , 𝑝−
1} ∪ (𝑝 − 1, ∞) 而(4.4)式 (𝑀 ≠ 0) 定义了一个矩母函数当且仅当额外地, 𝑛 ≥
max{rank(Ω), rank(∆)}当 𝑛 < 𝑝 − 1? [提示: 非平凡. 见 [88]问题 6.10.]

问题4.13的回答 (若真)则退化成文献 [89]的猜想,仅当 𝐴𝑗𝑗′ = 𝛽𝑗𝐼𝛿𝑗𝑗′ 或 Σ =
𝐼 ⊗ Ψ . 退化情形的问题4.13已经被许多作者解决,比如 [90]中的递归方法和 [91]中
的延拓方法. 我们想要得到的是问题4.13关于 𝑇1 及其类似情形的肯定的答案,所
以它仍是有价值和值得探讨的.

4.3 矩阵 𝑡分布

我们所熟知的单变元 𝑡 分布最早由戈塞 [36]引入, 其非中心分布涉及合流超
几何函数 1𝐹1. 通常,与 1𝐹1 有关的数值积分都较难求得显式解. 鉴于此问题的复
杂性,现有关于多元或矩阵 𝑡分布的定义都采用的是中心分布的比与固定均值的
和,以避免在分布中引入合流项 1𝐹1,这一点可见文献 [3,54-55,60-61] . 然而,如果总体
均值是一个未知参数,则中心统计量往往难以显示构造. 因此,采取恰当的定义是
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有必要的. 在本文中,为了与单变量非中心 𝑡分布的定义相吻合,我们引入具有非
中心矩阵正态分子的矩阵 𝑡分布如下.

定义 4.3. 𝑚 × 𝑝矩阵总体 𝑍 称作 𝑡矩阵,如果它能够写作 𝑍 = (𝑋 + 𝑀)𝑆− 1
2 的形

式,其中𝑀 是 𝑚 × 𝑝固定矩阵, 𝑋 ∈ 𝑁𝑚,𝑝(0, 𝐼𝑚, 𝐼𝑝)是正态矩阵, 𝑆 ∈ 𝑇1是积矩.

引理 4.14. 考虑正定矩阵 𝐶 (𝑝 × 𝑝),以及固定矩阵 𝐷 (𝑝 × 𝑝),

∫𝑋>0
etr(−𝐶𝑋′𝑋 + 𝐷𝑋′)|𝑋′𝑋|𝑎− 𝑝+1

2 (𝑑𝑋)

= 𝛤𝑝(𝑎 − 1
2)|𝐶|−(𝑎− 1

2 )
1𝐹1 (𝑎 − 1

2; 1
2𝑝; 1

4𝐷′𝐷𝐶−1
)

(4.14)

其中ℜ(𝑎) > 1
2(𝑝 − 1),积分过所有 𝑝 × 𝑝实对称正定矩阵.

引理4.14的证明. 令 𝑌 = 𝑋𝐶
1
2 , 𝐸 = 𝐷𝐶− 1

2 . 由极坐标分解,任意 𝑛 × 𝑝矩阵 𝑌 可以
唯一地分解为 𝑌 = 𝐻𝑅

1
2 , 𝐻 = 𝑌 (𝑌 ′𝑌 )− 1

2 , 𝑅 = 𝑌 ′𝑌 ,其中 𝑛 × 𝑝角向分量𝐻 ∈ 𝑉𝑛,𝑝.

根据定理2.3, (𝑑𝑌 ) = 2−𝑝|𝑅|− 1
2 (𝑑𝑅)(𝑑𝐾). 因此, (4.14)式变为

2−𝑝|𝐶|−𝑎+ 1
2 ∫𝑅>0

(𝑑𝑅) ∫𝑂(𝑛)
etr(−𝑅 + 𝐻′𝐸𝑅

1
2 )|𝑅|𝑎− 𝑝

2 −1(𝑑𝐾).

由引理3.13,这一积分又化简为

2−𝑝|𝐶|−𝑎+ 1
2 ∫𝑅>0

|𝑅|𝑎− 𝑝
2 −1 etr(−𝑅)0𝐹1 (

1
2𝑛; 1

4𝐸′𝐸𝑅) (𝑑𝑅).

由引理3.15,上式即合流超几何函数 1𝐹1.

定理 4.15. 非中心 𝑡矩阵 𝑍 具有如下密度
Γ𝑝 (𝑛 + 1

2𝑚 − 1
2)

(2)
1
2 (𝑛+𝑚)𝑝𝜋

1
2 𝑚𝑝Γ𝑝(𝑛

2)
|𝑈 + 𝑍′𝑍|−𝑛− 𝑚

2 − 1
2 etr (−1

2𝑀′𝑀)

×1𝐹1 (𝑛 + 1
2𝑚 − 1

2, 1
2𝑝; 1

4𝑀′𝑍𝑍′𝑀𝐵′(𝑈 + 𝑍′𝑍)−1𝐵) .

(4.15)

定理4.15的证明. 根据独立性假设, 𝑆 和 𝑋 的联合密度由下式给出
𝜋− 1

2 𝑚𝑝

(2)
1
2 (𝑛+𝑚)𝑝𝛤𝑝(𝑛

2)
etr (−1

2𝑋′𝑋 − 1
2𝑈𝑇 ) |𝑇 |

𝑛−𝑝−1
2 .

令 𝑍 = (𝑋 + 𝑀)𝑆− 1
2 ,则变换 (𝑋, 𝑆) ↦ (𝑍, 𝑆)的雅可比为 |𝑆|

𝑚
2 . 用 𝑋 替换 𝑍,再

乘以雅可比 |𝑆|
𝑚
2 ,我们得到了 𝑍 与 𝑆 的联合密度

𝜋− 1
2 𝑚𝑝

(2)
1
2 (𝑛+𝑚)𝑝𝛤𝑝(𝑛

2)
etr (−1

2𝑀′𝑀 + 𝑆
1
2 𝑍′𝑀 − 1

2(𝑈 + 𝑍′𝑍)𝐵𝑆𝐵′
) |𝑆|

𝑛+𝑚−𝑝−1
2 ,

这里我们用到了定义 𝑆 = 𝐵′𝑇 𝐵. 根据4.14,上式过所有 𝑝 × 𝑝正定矩阵 𝑆
1
2 积分

的结果正是(4.15).
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图 4.2 矩阵 𝑡 分布的 2 维等高线图. (A) 𝑍 = (𝑋 + 𝑀)𝑆− 1
2 , (B) 𝑍 = 𝑋𝑆− 1

2 + 𝑀. 其中
𝑋 ∼ 𝑁2,2(0, 𝐼2, 𝐼2), 𝑆 ∼ 𝑊2,2(0, 𝐼2),且𝑀 = (1.0, 0.2; −0.3, 0.5).

4.4 矩阵 𝐹 分布

通过引入矩形坐标, 我们已经得到了积矩分布的密度, 并构造了对应的 𝑡 统
计量. 但 𝑡分布不是方阵,涉及矩的积分也往往是发散的,因而基于特征值的矩阵
统计方法也就不适用于 𝑡统计量. 于是我们将注意力转向两个独立积矩分布之比,

即 𝐹 分布,其最大最小特征根分布被广泛应用于方差分析. 这其中的工作包括杉
山健一 [92] , 卡特里 [62] , 戴维斯 [63] , 平川文子 [64]等. 较之单个积矩分布的最大最
小特征根 [62,68-70] , 𝐹 统计量能够同时考虑均值与方差的波动信息,其分布也更易
求得. 除此之外, 迹统计量 [93]与行列式统计量 [94]也都是一些典型的基于特征根
的统计量. 我们将在本章的最后一节使用数值模拟分析这些统计量的功效.

定义 4.4. 𝑛 × 𝑝矩阵总体 𝑍 称作中心 𝐹 矩阵,如果它可以写成 𝑍 = 𝑆1𝑆−1
2 ,其中

𝑆1 ∈ 𝑇𝑖 为中心积矩, 𝑆2 ∈ 𝑇𝑖′ 为另一中心积矩,具有相同的矩形坐标 𝐵. 如果 𝑆1

是非中心的但 𝑆2 是中心的,且 𝑆1 与 𝑆2 具有相同的精度矩阵 𝛳 ∈ 𝑇𝑖,则 𝑆 称作
非中心 𝐹 矩阵.

定理 4.16. 中心 𝐹 矩阵 𝑆 具有密度函数

𝑝(𝑆) =
|𝛳1|

1
2 |𝛳2|

1
2Γ𝑝(𝑛1+𝑛2+𝑝+1

2 )

2(𝑛1+𝑛2)𝑝𝐵𝑝(𝑛1
2 , 𝑛2

2 )Γ𝑝(𝑝+1
2 )|𝑈2|

𝑛1+𝑛2
2

|𝑆|
𝑛1−𝑝−1

2

×1𝐹1 (
𝑛1 + 𝑛2

2 ; 𝑝 + 1
2 ; −1

2(𝑈1𝑈 −1
2 + 𝑆)) ,

(4.16)
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定理4.16的证明. 依定义, 𝑆1 = 𝐵′𝑇1𝐵和 𝑆2 = 𝐵′𝑇2𝐵具有联合分布

𝑝(𝑆1, 𝑆2) = |𝛳1|
1
2 |𝛳2|

1
2

2(𝑛1+𝑛2)𝑝Γ𝑝(𝑛1
2 )Γ𝑝(𝑛2

2 )
etr (−1

2𝑈2𝑇2) |𝑇2|
𝑛2−𝑝−1

2

× etr (−1
2𝑈1𝑇1) |𝑇1|

𝑛1−𝑝−1
2 .

(4.17)

矩阵变换 (𝑆1, 𝑆2) ↦ (𝑆1𝑆−1
2 , 𝑆2)具有雅可比行列式 |𝑆2|−(𝑝+1)/2. 因此, 𝑆 与 𝑆2根

据(4.17)式的联合分布为

𝑝(𝑆, 𝑆2) = |𝛳1|
1
2 |𝛳2|

1
2

2(𝑛1+𝑛2)𝑝Γ𝑝(𝑛1
2 )Γ𝑝(𝑛2

2 )
etr (−1

2(𝑈2 + 𝑈1𝑆)𝑇2)

×|𝑆|
𝑛1−𝑝−1

2 |𝑇2|
𝑛1+𝑛2−𝑝−1

2 .

(4.18)

由贝塔积分与超几何函数的性质

1𝐹1(𝑎; 𝑎; 𝑋) = 0𝐹0(𝑋) = etr(𝑋),

∫𝑆>0
|𝑆|𝑎− 𝑝+1

2 |𝐼 − 𝑆|𝑏− 𝑝+1
2 0𝐹0(𝑅𝑆)𝑑𝑆 = 𝐵(𝑎, 𝑏)−1

1𝐹1(𝑎; 𝑏; 𝑅),

在(4.18)式中积去 𝑆2,我们就得到了 𝑆 的密度分布(4.16).

定理 4.17. 令 𝑆 = 𝑆1𝑆−1
2 是非中心 𝐹 矩阵.

1. 𝑆(𝐼 + 𝑆)−1 = 𝑆1(𝑆1 + 𝑆2)−1的特征根 𝑓1, 𝑓2, … , 𝑓𝑝的联合分布为

𝜋𝑝2/2|𝛳|

2(𝑛1+𝑛2)𝑝𝐵𝑝(𝑛1
2 , 𝑛2

2 )𝛤𝑝(𝑝
2)|𝑈|

𝑛1+𝑛2
2

𝑝

∏
𝑖<𝑗

(𝑓𝑖 − 𝑓𝑗)|𝐹 |
𝑛1
2 |𝐼 − 𝐹 |

𝑛1−𝑝−1
2

× etr (−1
2Ω) 1𝐹1 (

𝑛1 + 𝑛2
2 ; 𝑛1

2 ; 𝛥𝑈 −1, 𝐹 ) ,

(4.19)

其中 Ω, ∆的定义类似定理4.4, 𝐹 = diag(𝑓1, 𝑓2, … , 𝑓𝑝), 𝑓1 > 𝑓2 > ⋯ > 𝑓𝑝;

别处为零.

2. 最大特征根 𝑓1的分布为

𝑃 (𝑓1 < 𝑥) = |𝛳|𝑥
𝑛1𝑝

2

2(𝑛1+𝑛2)𝑝𝐵𝑝(𝑛1
2 , 𝑛2

2 )𝐵𝑝(𝑛1
2 , 𝑝+1

2 )|𝑈|
𝑛1+𝑛2

2

× etr (−1
2Ω) 2𝐹1 (𝑎, 𝑏; 𝑐; 𝛥𝑈 −1, 𝛥𝑈 −1𝑅) .

(4.20)

其中 𝑎 = −1
2(𝑛2 − 𝑝 − 1), 𝑏 = 1

2(𝑛1 + 𝑛2), 𝑐 = 1
2(𝑛2 + 𝑝 + 1).
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3. 最小特征根 𝑓𝑝的分布为

1 − 𝑃 (𝑓𝑝 ≤ 𝑦) = 𝑃 (𝑓𝑝 > 𝑦) = |𝛳|(1 − 𝑦)
𝑛2𝑝

2

2(𝑛1+𝑛2)𝑝𝐵𝑝(𝑛1
2 , 𝑛2

2 )𝐵𝑝(𝑛2
2 , 𝑝+1

2 )|𝑈|
𝑛1+𝑛2

2

× etr (−1
2Ω) 2𝐹1 (𝑎, 𝑏; 𝑐; 𝛥𝑈 −1, 𝛥𝑈 −1𝑅) .

(4.21)

其中 𝑎 = −1
2(𝑛1 − 𝑝 − 1), 𝑏 = 1

2(𝑛1 + 𝑛2), 𝑐 = 1
2(𝑛1 + 𝑝 + 1).

定理4.17的证明. 直接计算𝑆1 = 𝐵′𝑇1𝐵和𝑆2 = 𝐵′𝑇2𝐵 (模去非中心项 etr (−1
2Ω))

的联合分布

𝑝(𝑆1, 𝑆2) = |𝛳|
2(𝑛1+𝑛2)𝑝𝛤𝑝(𝑛1

2 )𝛤𝑝(𝑛2
2 )

etr (−1
2𝑈𝑇2) |𝑇2|

𝑛2−𝑝−1
2

× etr (−1
2𝑈𝑇1) |𝑇1|

𝑛1−𝑝−1
2 0𝐹1 (

𝑛1
2 ;∆𝑇1) .

(4.22)

雅可比变换 (𝑆1, 𝑆2) ↦ (𝑆1𝑆−1
2 , 𝑆2)的行列式也是类似的,

𝑝(𝑆, 𝑆2) = |𝛳|
2(𝑛1+𝑛2)𝑝𝛤𝑝(𝑛1

2 )𝛤𝑝(𝑛2
2 )

etr (−1
2𝑈(𝑆 + 𝐼)𝑇2)

×|𝑆|
𝑛1−𝑝−1

2 |𝑇2|
𝑛1+𝑛2−𝑝−1

2 0𝐹1 (
𝑛1
2 ;∆𝑆𝑇2) .

(4.23)

对(4.23)式积分我们有 𝑆 的概率密度函数

𝑝(𝑆) = |𝛳|

2(𝑛1+𝑛2)𝑝𝐵𝑝(𝑛1
2 , 𝑛2

2 )|𝑈|
𝑛1+𝑛2

2
|𝐼 + 𝑆|− 𝑛1+𝑛2

2 |𝑆|
𝑛1−𝑝−1

2

×1𝐹1 (
𝑛1 + 𝑛2

2 ; 𝑛1
2 ;∆𝑈 −1(𝐼 + 𝑆−1)−1

) ,
(4.24)

考虑变形 𝑆(𝐼 + 𝑆)−1 = 𝑆1(𝑆1 + 𝑆2)−1,简单计算知 𝑆 ↦ 𝑆(𝐼 + 𝑆)−1 的雅可比行
列式为 |𝐼 + 𝑆|−(𝑝+1),

𝑝(𝑆) = |𝛳|

2(𝑛1+𝑛2)𝑝𝐵𝑝(𝑛1
2 , 𝑛2

2 )|𝑈|
𝑛1+𝑛2

2
|𝑆|

𝑛1−𝑝−1
2 |𝐼 − 𝑆|

𝑛2−𝑝−1
2

×1𝐹1 (
𝑛1 + 𝑛2

2 ; 𝑛1
2 ;∆𝑈 −1𝑆) ,

(4.25)

通过在正交群上积分,我们得到了统计量 𝑆1(𝑆1𝑆2)−1的特征根分布

𝜋𝑝2/2|𝛳|

2(𝑛1+𝑛2)𝑝𝐵𝑝(𝑛1
2 , 𝑛2

2 )𝛤𝑝(𝑝
2)|𝑈|

𝑛1+𝑛2
2

𝑝

∏
𝑖<𝑗

(𝑓𝑖 − 𝑓𝑗)|𝐹 |
𝑛1−𝑝−1

2 |𝐼 − 𝐹 |
𝑛1−𝑝−1

2

×1𝐹1 (
𝑛1 + 𝑛2

2 ; 𝑛1
2 ;∆𝑈 −1, 𝐹 ) ,

(4.26)
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其中 𝐹 = diag(𝑓1, 𝑓2, … , 𝑓𝑝), 𝑓1 > 𝑓2 > ⋯ > 𝑓𝑝;别处为零.

根据非中心分布的结果,我们的目标是计算积分

𝑃 (𝑆 < 𝑅) = |𝛳|

2(𝑛1+𝑛2)𝑝𝐵𝑝(𝑛1
2 , 𝑛2

2 )|𝑈|
𝑛1+𝑛2

2
∫

𝑅

0
|𝑆|

𝑛1−𝑝−1
2 |𝐼 − 𝑆|

𝑛2−𝑝−1
2

×1𝐹1 (
𝑛1 + 𝑛2

2 ; 𝑛1
2 ; 𝛥𝑈 −1𝑆) 𝑑𝑆

= |𝛳||𝑅|
𝑛1
2

2(𝑛1+𝑛2)𝑝𝐵𝑝(𝑛1
2 , 𝑛2

2 )𝐵𝑝(𝑛1
2 , 𝑝+1

2 )|𝑈|
𝑛1+𝑛2

2

×2𝐹1 (𝑎, 𝑏; 𝑐; 𝛥𝑈 −1, 𝛥𝑈 −1𝑅) .

其中 𝑎 = −1
2(𝑛2 − 𝑝 − 1), 𝑏 = 1

2(𝑛1 + 𝑛2), 𝑐 = 1
2(𝑛2 + 𝑝 + 1). 因此,令 𝑅 = 𝑥𝐼𝑚 使得

𝑓1 < 𝑥等价于 𝑆 < 𝑥𝐼𝑚,最大特征根 𝑓1的概率分布函数为

𝑃 (𝑓1 < 𝑥) = |𝛴1|𝑥
𝑛1𝑝

2

2(𝑛1+𝑛2)𝑝𝐵𝑝(𝑛1
2 , 𝑛2

2 )𝐵𝑝(𝑛1
2 , 𝑝+1

2 )|𝑈|
𝑛1+𝑛2

2

×2𝐹1 (𝑎, 𝑏; 𝑐; 𝛥𝑈 −1, 𝛥𝑈 −1𝑅) .

where 𝑎 = −1
2(𝑛2 − 𝑝 − 1), 𝑏 = 1

2(𝑛1 + 𝑛2), 𝑐 = 1
2(𝑛2 + 𝑝 + 1). 同样，最小特征根 𝑓𝑝

是 𝐼 − 𝑆 的最大特征根. 通过对称性,我们便知道了 𝑓1的概率分布函数.

4.5 数值模拟

考虑两个相互独立的矩阵正态总体𝑋1 ∼ 𝑁𝑛,𝑝(𝑀1; 𝐴, 𝐵), 𝑋2 ∼ 𝑁𝑛,𝑝(𝑀2; 𝐼, 𝐵),
其中 𝑀1 = 𝜇11𝑛×𝑝, 𝑀2 = 𝜇21𝑛×𝑝. 根据矩阵 𝐹 分布密度, 我们比较了霍特林
𝑇 2 = tr(𝑆)、威尔克斯 𝛬 = |𝑆|、洛伊 𝜆max(𝑆) 和似然比统计量 (安德森-布哈
达方法)在不同样本量 𝑛和变量数目 𝑝下关于以下三条假设的功效,

• 𝐻0: 𝜇1 = 𝜇2 = 0, 𝐴 = 𝛾𝐼 (𝛾 > 0);

• 𝐻1: 𝜇1 = 𝜇2 = 𝜇,方差未知但相等;

• 𝐻2: 𝜇1 ≠ 𝜇2,方差不相等.
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表 4.2 (a) 𝜇1 = 𝜇2 = 0 (𝐴 = 𝛾𝐼 , 𝐵 = 𝐼), 𝑛 = 30, 𝑝 = 2的精确功效分析.

检验统计量 𝛾 = 1 𝛾 = 2 𝛾 = 3 𝛾 = 4 𝛾 = 5 𝛾 = 6

霍特林 𝑇 2 = tr(𝑆) 0.051 0.847 0.982 1.000 1.000 1.000

威尔克斯 𝛬 = |𝑆| 0.049 0.821 0.963 0.993 0.998 1.000

洛伊 𝜆max(𝑆) 0.048 0.805 0.951 0.990 0.997 0.999

表 4.3 (b) 𝜇1 = 𝜇2 = 𝜇 (𝛾 = 1), 𝑛 = 30, 𝑝 = 2的精确功效分析.

检验统计量 𝜇 = 0 𝜇 = 0.5 𝜇 = 1.0 𝜇 = 1.5 𝜇 = 2.0 𝜇 = 2.5

霍特林 𝑇 2 0.050 0.328 0.873 0.972 0.998 1.000

威尔克斯 𝛬 0.048 0.302 0.842 0.961 0.994 0.999

洛伊最大根 0.047 0.284 0.821 0.953 0.988 0.998

表 4.4 使用线性逼近的渐近功效分析 (安德森-布哈达方法).

(c) 𝜇1 = 0.1, 𝜇2 = 0 (𝐴 = 𝛾𝐼 , 𝐵 = 𝐼)

检验统计量 𝛾 = 1 𝛾 = 2 𝛾 = 3 𝛾 = 4 𝛾 = 5 𝛾 = 6

似然比 −2 ln 𝐿1
𝐿0

0.056 0.043 0.039 0.034 0.031 0.029

(c) 𝜇1 = 0.3, 𝜇2 = 0 (𝐴 = 𝛾𝐼 , 𝐵 = 𝐼).

检验统计量 𝛾 = 1 𝛾 = 2 𝛾 = 3 𝛾 = 4 𝛾 = 5 𝛾 = 6

似然比 −2 ln 𝐿1
𝐿0

0.999 0.993 0.983 0.972 0.956 0.941

(c) 𝜇1 = 0.8, 𝜇2 = 0 (𝐴 = 𝛾𝐼 , 𝐵 = 𝐼).

检验统计量 𝛾 = 1 𝛾 = 2 𝛾 = 3 𝛾 = 4 𝛾 = 5 𝛾 = 6

似然比 −2 ln 𝐿1
𝐿0

1.000 1.000 1.000 1.000 1.000 1.000
注: 𝑁 = 30, 𝑛 = 2, 1000次蒙特卡洛模拟.

随着样本量 𝑛和自变量维数 𝑝的增大,霍特林 𝑇 2 统计量的大小均维持在显
著性水平 𝛼 = 0.05附近,而功效随非中心参数偏离零的程度增大而递增,总体表
现较佳. 威尔克斯 𝛬和最大根统计量次之. 而似然比统计则是在大样本情形表现
出较满意的效果.
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图 4.3 基于霍特林 𝑇 2(左上)、威尔克斯 𝛬(右上)、洛伊最大根 (左下)和似然比 (右下)关于
𝑛 = 30, 𝑝 = 2, 𝛼 = 0.05的功效分析. 在 3000次蒙特卡罗模拟中,前三个统计量的分布为精确
分布,最后一个统计量的分布为线性近似的 𝜒2 分布.

图 4.4 𝑛 = 70, 𝑝 = 3, 𝛼 = 0.05的功效分析. 与上图类似.

39



中山大学博士学位论文

图 4.5 𝑛 = 200, 𝑝 = 5, 𝛼 = 0.05的功效分析. 与上图类似.
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第 5章 点过程的极小可料强度
在本章中,我们将研究点过程的重要性采样与拟合优度检验. 一方面,时变泊

松过程已被广泛应用于点过程的拟合优度检验,但严格的理论基础涉及到证明极
小滤子的存在性,这使得布里莫 [34] 1972年的提问有意义,也自然地引出了极小可
料强度的定义. 另一方面,绝对连续的测度变换在重要性采样方面也有重要应用.

为此,我们先研究点过程在测度变换下的性质.

设 ℱ𝑡, 𝑡 ≥ 0 是抽象样本空间 Ω 上包含所有可能结果的单调非降 𝜎-代数子
集族, 其中 ℱ𝑠 ⊆ ℱ𝑡 ⊆ ℱ (𝑡 > 𝑠), 包含于所有可能发生事件的 𝜎-代数 ℱ . 记
{ℱ𝑡 ∶ 𝑡 ≥ 0} 为 𝑭 . 我们关心过程 𝑁 = {𝑁(𝜔, 𝑡),𝑭 ,𝑷 }, 对于所有 𝜔, 𝑁(𝜔, 𝑡) 是
[0, ∞)上的分片常值函数,其中 𝑷 是定义在 𝜎-代数ℱ 上的概率测度. 这里假设对
于任意 𝑡 ≥ 0和任意实数轴的子集 Γ ,集合 {𝜔 ∶ 𝑁(𝜔, 𝑡) ∈ Γ} ∈ ℱ𝑡.

5.1 极小可料强度

𝑁 称作强度为 𝜆的泊松过程,如果它满足以下条件: 对于任意 𝑡 ≥ 0和实数
轴上的任意博雷尔集 Γ ,

(P0) (适应) {𝜔 ∶ 𝑁(𝜔, 𝑡) ∈ Γ} ∈ ℱ𝑡;

(P1) (右连续) lim
𝑡→𝑠+

𝑁(𝜔, 𝑠) = 𝑁(𝜔, 𝑠) (𝑓(𝑥+)表示右极限 lim
𝑦→𝑥+

𝑓(𝑦)，𝑓(𝑥−)表示
左极限 lim

𝑦→𝑥−
𝑓(𝑦));

(P2) (非减) 𝑁(𝜔, 𝑡) ≥ 𝑁(𝜔, 𝑠), 𝑡 > 𝑠;

(P3) (整值) 𝑁(𝜔, 𝑡) ∈ {0, ±1, ±2, … };

(P4) (零初值) 𝑁(𝜔, 0) = 0;

(P5) (单位跳跃) 𝛥𝑁(𝜔, 𝑠) = 𝑁(𝜔, 𝑠) − 𝑁(𝜔, 𝑠−) ∈ {0, 1},对于固定的 𝜔;并且如
果

(P6) (泊松律) ∫Ω exp[𝑖𝑢(𝑁(𝜔, 𝑡) − 𝑁(𝜔, 𝑠))]𝑷 (𝑑𝜔) = exp[𝜆(𝑡 − 𝑠)(𝑒𝑖𝑢 − 1)];

(P7) (独立增量) 𝑁𝑡 − 𝑁𝑠 ⟂ ℱ𝑠，其中 0 ≤ 𝑠 ≤ 𝑡.

事实上，根据伦伊 [95]的结果, 泊松过程的两两独立性 (符号 ⟂表示这一点)

意味着 𝑛分量独立性. 定义 𝑇𝑛(𝜔) = inf{𝑡 ≥ 0 ∶ 𝑁(𝜔, 𝑡) ≥ 𝑛}. 那么泊松过程可以
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表示为
𝑁(𝜔, 𝑡) =

∞

∑
𝑛=1

1{𝑇𝑛(𝜔) ≤ 𝑡}, (5.1)

其中 𝑈𝑛+1(𝜔) = 𝑇𝑛+1(𝜔) − 𝑇𝑛(𝜔),其中 𝑛 = 1, 2, … ,服从均值为 1/𝜆的独立同分布
指数分布.

(5.1)式中的定义可以推广至任意停时列 0(= 𝑇0(𝜔)) ≤ 𝑇1(𝜔) ≤ 𝑇2(𝜔) ≤ … ,其
中 𝑇𝑛(𝜔)趋于无穷,且对于所有 𝑡和 𝑛,都有 {𝜔 ∶ 𝑇𝑛(𝜔) ≤ 𝑡} ∈ ℱ𝑡. 由于对于固定
𝑡, (5.1)式是示性函数 {𝜔 ∶ 𝑇𝑛(𝜔) ≤ 𝑡} ∈ ℱ𝑡 之和,因此它是是适应的;由于示性函
数非负,且对于固定 𝜔,它具有右连续性,因此(5.1)式也是右连续的. 它显然是非
减的,且值为整数. 然而,它不一定从零开始,也不一定有单位跳跃,因为两个这样
的 𝑇𝑛(𝜔)和 𝑇𝑛′(𝜔), 𝑛 ≠ 𝑛′可能在Ω的某个子集Ω′ ∈ ℱ 上相等,使得 𝑷 (Ω′) > 0.

除此以外, 满足 (P0)-(P5)的过程 𝑁 称为简单点过程. 如果一个适应过程在两个
变量上关于所有左连续适应过程生成的 Ω × [0, ∞)上的最小 𝜎-代数是联合可测
的, 则称该适应过程是可料的. 简单点过程 𝑁 的补偿子是唯一可料的非减过程
𝐴(𝜔, 𝑡),其中 𝐴(𝜔, 0) = 0,使得 𝑁(𝜔, 𝑡) − 𝐴(𝜔, 𝑡)是 𝑭 -局部鞅. 简单点过程局部具
有可积变差 (参见 [27]定理 3.22之前第 66页的定义),因此其补偿子始终存在. 例如,

泊松过程的补偿子是 𝐴(𝜔, 𝑡) = 𝜆𝑡.
对于简单点过程 𝑁 = {𝑁(𝜔, 𝑡),𝑭 ,𝑷 },如果 𝑭 与所有 𝑁(⋅, 𝑠), 𝑠 ≤ 𝑡生成的自

然滤子相一致,则我们称简单点过程 𝑁 = {𝑁(𝜔, 𝑡),𝑭 ,𝑷 }是非预期的,并且其补
偿器 𝐴(𝜔, 𝑡)是自然的. 根据佐恩引理,存在一个极小滤子 𝑭 ,它是所有滤子 𝑭 在
偏序集 (𝑆, ≤)中的极小元,满足

(S1) 𝑁 是𝑭 -适应的,

(S2) 𝐴是𝑭 -可料的,

(S3) 𝑁 − 𝐴是一个𝑭 -局部鞅,

其中 𝑮 ≤ 𝑭 ⇔ 𝒢𝑡 ∈ 𝑮 ⊆ ℱ𝑡 ∈ 𝑭 ,对所有 𝑡 ≥ 0都成立. 这是因为 𝑆 中满足条件的
滤子降链的非空交再次满足 (S1)-(S3),从而给出了佐恩引理的下界. [34]提出了一
个问题: 如果存在一个概率测度 𝑷 0, 相对于该测度, 点过程 𝑁 = {𝑁(𝜔, 𝑡),𝑭 ,𝑷 }
绝对连续,而 𝑁0 = {𝑁(𝜔, 𝑡),𝑭 ,𝑷 0}是标准泊松过程,那么极小滤子 𝑭 ≠ 𝑭𝑁 是
否成立? 在本章节,我们尝试对他的问题做出简要的回答: 这是不可能的.

回顾一下简单点过程𝑁 不一定是有序的,这意味着对于任何停时 𝜏(𝜔) ≥ 0,

lim
ℎ→0

1
ℎ𝑷 (𝑁(⋅, 𝜏(⋅) + ℎ) − 𝑁(⋅, 𝜏(⋅)) > 1 ∣ ℱ𝜏)(𝜔) = 0, (5.2)
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而有序性意味着简单性 (例如, 习题 3.3.2中的混合泊松过程 [32] ). 这里, ℱ𝜏 表示
ℱ 的停止 𝜎-子代数,

ℱ𝜏 = {𝐴 ∶ 𝐴 ∩ {𝜔 ∶ 𝜏(𝜔) ≤ 𝑡} ∈ ℱ𝑡, for all 𝑡 ≥ 0},

有序点过程𝑁 的强度 𝜆(𝜔, 𝑡)是一个非负过程,对于任何可料停时 𝜏(𝜔) ≥ 0,满足

lim
ℎ→0

1
ℎ𝑷 (𝑁(⋅, 𝜏(⋅) + ℎ) − 𝑁(⋅, 𝜏(⋅)) = 1 ∣ ℱ𝜏)(𝜔) = 𝜆(𝜔, 𝜏(𝜔)). (5.3)

这里,我们使用了与 [34]不同的定义,其考虑将(5.2)和(5.3)中的停时替换为固定的
𝑡 ≥ 0. 我们的定义的优点在于,对两个这样的过程 𝜆(𝜔, 𝑡)和 𝜆′(𝜔, 𝑡),它要求了更
强的不可区分唯一性,即

𝑷 (𝜆(⋅, 𝑡) ≠ 𝜆′(⋅, 𝑡)存在𝑡 ≥ 0) = 0.

这由可料截口定理 ( [96]定理 4.85 )保证,而在布里莫的定义中,只假设版本唯一性,

即
𝑷 (𝜆(⋅, 𝑡) ≠ 𝜆′(⋅, 𝑡)) = 0, 对任意𝑡 ≥ 0.

设 𝑭 为适应滤子, 𝑭𝑁 为简单点过程𝑁 生成的自然滤子. 另设 ℱ∞为包含所
有 ℱ𝑡, 𝑡 ≥ 0的 ℱ 的最小 𝜎-子代数. 我们假设 𝜆(𝜔, 𝑡)满足

(A0) 𝜆(𝜔, 𝑡)是 𝑭 -适应的;

(A1) 𝜆(𝜔, 𝑡)对于 𝜔和 𝑡都是可测的;

(A2) 𝜆(𝜔, 𝑡)对于固定的 𝜔和 𝑡都是严格正的;

(A3) 对于每个 𝑡几乎必然存在 ∫𝑡
0 𝜆(𝜔, 𝑠)𝑑𝑠 < ∞;

(A4) 对于每个 𝑡几乎必然存在 ∫𝑡
0 log 𝜆(𝜔, 𝑠)𝑁(𝜔, 𝑑𝑠).

从 𝜆(𝜔, 𝑡)中我们定义𝑀(𝜆)、𝐴(𝜆)和 𝜁 𝑡
𝑠(𝜆)如下:

𝑀(𝜆)(𝜔, 𝑡) = 𝑁(𝜔, 𝑡) − 𝐴(𝜆)(𝜔), 其中𝐴(𝜆)(𝜔, 𝑡) = ∫
𝑡

0
𝜆(𝜔, 𝑠)𝑑𝑠,

且𝜁 𝑡
𝑠(𝜆)(𝜔) = ∫

𝑡

𝑠
[1 − 𝜆(𝜔, 𝑢)]𝑑𝑢 + ∫

𝑡

𝑠
log 𝜆(𝜔, 𝑢)𝑁(𝜔, 𝑑𝑢).

对于 𝑡 ∈ [0, ∞],设

𝑸(𝑑𝜔) = exp[𝜁 𝑡
0(𝜆)(𝜔)]𝑷 (𝑑𝜔), 在ℱ𝑡上. (5.4)
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定理 5.1. 假设 𝑁 = {𝑁(𝜔, 𝑡),𝑭 ,𝑷 }是强度为 1的泊松过程,且 𝜆(𝜔, 𝑡)满足 (A0)-

(A4). 在(5.4)中取 𝑡 = ∞. 我们假设 𝑸(Ω) = 1.对于任意 𝑮使得 𝑭𝑁 ≤ 𝑮 ≤ 𝑭 ,存

在不可区分意义下唯一的𝑮可料过程 𝜆𝑮(𝜔, 𝑡),使得𝑀(𝜆𝑮) = {𝑀(𝜆𝑮)(𝜔, 𝑡),𝑮,𝑸}
为鞅. 特别地,如果 𝜆(𝜔, 𝑡)是 𝑮可料的,那么它与 𝜆𝑮(𝜔, 𝑡)是不可区分的.

注 5.1. 根据截口定理和停止定理 ( [96]定理 6.43 ),任何非负 𝑭 -可测过程 𝜆(𝜔, 𝑡)都有
一个 𝑮-可料投影 𝑝𝜆(𝜔, 𝑡),使得对于任何有限非负可料停时 𝜏(𝜔) ≥ 0,

𝑬𝑷 [𝜆(𝜔, 𝜏(𝜔)) ∣ 𝒢𝜏−](𝜔) = 𝑝𝜆(𝜔, 𝜏(𝜔)) (5.5)

其中 𝒢0− = 𝒢0且

𝒢𝜏− = 𝜎 ({𝐴 ∩ {𝜔 ∶ 𝑡 < 𝜏(𝜔)}∶ 𝑡 ≥ 0, 𝐴 ∈ 𝒢𝑡} ∪ 𝒢0) .

我们可以很容易地证明,对于任何趋向于 𝜏(𝜔)的非负非减停时列 𝜏𝑛(𝜔), 𝒢𝜏−是包
含所有 𝒢𝜏𝑛 的最小 𝜎-代数 ( [27]定理 3.6 ). 因此,定理5.1可以重述如下: 𝑝𝜆(𝜔, 𝑡)是不
可区分意义下唯一的 𝑮可料过程,使得𝑀(𝑝𝜆) = {𝑀(𝑝𝜆)(𝜔, 𝑡),𝑮,𝑸}为鞅.

下文中, 当不致引起混淆时, 我们将简写这些记号: 𝑁𝑡(𝜔) = 𝑁(𝜔, 𝑡), 有时省
略 𝜔; 𝑬𝑷 [𝑍] = ∫𝛺 𝑍(𝜔)𝑷 (𝑑𝜔),有时省略下标 𝑷 .

引理 5.2. 假设𝑁 = {𝑁(𝜔, 𝑡),𝑭 ,𝑷 }满足 (P0)-(P5)且

∫Ω
𝑁(𝜔, 𝑡)𝑷 (𝑑𝜔) < ∞, 对于每个𝑡 ≥ 0, (5.6)

假设 𝜆 = {𝜆(𝜔, 𝑡),𝑭 ,𝑷 }满足 (A0)-(A4). 以下断言是等价的.

1. 对于任意非负的 𝑭 -可料过程 𝐶(𝜔, 𝑡)，

∫Ω
𝑷 (𝑑𝜔) [∫

∞

0
𝐶(𝜔, 𝑡)𝑁(𝜔, 𝑑𝑡)] = ∫Ω

𝑷 (𝑑𝜔) [∫
∞

0
𝐶(𝜔, 𝑡)𝐴(𝜔, 𝑑𝑡)] .

2. 𝑁(𝜔, 𝑡) − 𝐴(𝜔, 𝑡)是 𝑷 下的 𝑭 -鞅.

3. 𝑁(𝜔, 𝑡) − 𝐴(𝜔, 𝑡)是 𝑷 下的 𝑭 -局部鞅.

引理5.2的证明. (3) ⇒ (1). 如果𝑁(𝜔, 𝑡) − 𝐴(𝜔, 𝑡)是局部鞅,则𝐴(𝜔, 𝑡)是可积的,因
为在(5.6)中要求了𝑁(𝜔, 𝑡)对每个 𝑡 ≥ 0都是可积的. 让我们选取一个趋于无穷大
的非负停时列 𝜏𝑛(𝜔)和一个可料的生成元

𝐶(𝜔, 𝑢) = 1{𝜔 ∈ Γ}1{𝑠 < 𝑢 ≤ 𝑡}
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,其中 Γ ∈ ℱ𝑠，

𝑬[(𝑁𝑡∧𝜏𝑛 − 𝑁𝑠∧𝜏𝑛);Γ ] = 𝑬[∫
∞

0
𝐶𝑢𝑑𝑁𝑢∧𝜏𝑛]

= 𝑬[∫
∞

0
𝐶𝑢𝑑𝐴𝑢∧𝜏𝑛] = 𝑬[(𝐴𝑡∧𝜏𝑛 − 𝐴𝑠∧𝜏𝑛);Γ ],

(5.7)

其中(5.7)中的第一个和最后一个期望取自Ω的子集 Γ . 设 𝑛趋向于∞,则由单调
类定理可得 (1). 如果 (5.7)对任意可料过程 𝐶(𝜔, 𝑢)成立,则通过 𝑁(𝜔, 𝑡)的可积
条件(5.6)证明 𝑁(𝜔, 𝑡)再次为鞅. 逆命题 (1) ⇒ (2)也成立. 由于任意鞅都是局部
鞅,因此 (2) ⇒ (3)成立.

引理 5.3. 假设同定理5.1. 如果我们令 𝑍(𝜔, 𝑡) = exp[𝜁 𝑡
0(𝜔)]，则 𝑬[𝑍∞] = 1意味

着 𝑍 = {𝑍(𝜔, 𝑡),𝑭 ,𝑷 }是一致可积鞅,即 𝑍 是鞅,并且

1. ∃𝐶 > 0, sup𝑡 𝑬[|𝑍𝑡|] ≤ 𝐶;

2. ∀𝜀 > 0, ∃𝛿 > 0使得 ∀Γ ∈ ℱ∞, 𝑃 (Γ ) ≤ 𝛿, sup𝑡 𝑬[|𝑍𝑡|;Γ ] < 𝜀.

引理5.3的证明. 将 𝑍(𝜔, 𝑡) = exp[𝜁 𝑡
0(𝜔)]重写为

𝑍𝑡 = exp [∫
𝑡

0
log 𝜆(𝜔, 𝑠)𝑁(𝜔, 𝑑𝑠)] / exp [∫

𝑡

0
(𝜆(𝜔, 𝑡) − 1)𝑑𝑠] (= 𝑋𝑡/𝑌𝑡).

我们将证明 𝑍 是鞅. 通过微分,我们发现

𝑑𝑍 = 𝑌 𝑑𝑋 + 𝑋𝑑𝑌 = 𝑌 (𝑑𝑋 − 𝑋(𝜆 − 1)𝑑𝑠)(= 𝑌 𝑑𝑀),

𝑀(𝜔, 𝑡) = 𝑋(𝜔, 0) + ∫
𝑡

0
[𝑋(𝜔, 𝑠) − 𝑋(𝜔, 𝑠−)][𝑁(𝜔, 𝑑𝑠) − 𝑑𝑠].

这里, 𝑀 是鞅. 由于 𝑌 料,因此 𝑍 是局部鞅. 设其对应的约化停时列为 𝜏𝑛(𝜔) ≥ 0.

根据法图引理,

𝑬[𝑍𝑡 ∣ ℱ𝑠] ≤ lim inf
𝑛→∞

𝑬[𝑍𝑡∧𝜏𝑛 ∣ ℱ𝑠] = lim inf
𝑛→∞

𝑍𝑠∧𝜏𝑛 = 𝑍𝑠, 𝑡 ≥ 𝑠

因此, 𝑍 是非负上鞅. 非负上鞅几乎必然收敛于一个非负随机变量,即 𝑍∞. 由于
𝑬[𝑍𝑡|ℱ𝑠]的取值范围为 0到 𝑍𝑠,因此 𝑬[𝑍∞] = 𝑬[𝑍0] = 1意味着等号成立,于是
𝑍 是鞅.

一致可积性由以下基本引理得出,其证明见 [27]第一章定理 11.

引理 5.4. 设 𝑍 = {𝑍(𝜔, 𝑡),𝑭 ,𝑷 }为鞅. 以下三个条件等价.
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1. 存在一个随机变量 𝑍∞使得 lim
𝑡→∞

𝑬|𝑍𝑡 − 𝑍∞| = 0.

2. 存在一个随机变量 𝑍∞使得 𝑬[𝑍∞] < ∞且 𝑍(𝜔, 𝑡) = 𝑬[𝑍∞|ℱ𝑡](𝜔).

3. 𝑍 = {𝑍(𝜔, 𝑡),𝑭 ,𝑷 }一致可积.

引理 5.5. 在 (A0)-(A4)下, 𝑀(𝜆) = {𝑀(𝜆)(𝜔, 𝑡),𝑭 ,𝑸}为鞅.

引理5.5的证明. 根据引理5.2,我们需要证明,对于任意非负的𝑭 -可料过程𝐶(𝜔, 𝑡),

𝑬𝑸[∫
∞

0
𝐶𝑡𝑑𝑁𝑡] = 𝑬𝑸[∫

∞

0
𝐶𝑡𝜆𝑡𝑑𝑡]. (5.8)

根据 𝑸的定义，(5.8)等价于

𝑬𝑷 [𝑍∞ ∫
∞

0
𝐶𝑡𝑑𝑁𝑡] = 𝑬𝑷 [𝑍∞ ∫

∞

0
𝐶𝑡𝜆𝑡𝑑𝑡], (5.9)

结合福比尼定理和引理5.3,可得

𝑬𝑷 [∫
∞

0
𝑍𝑡𝐶𝑡𝑑𝑁𝑡] = 𝑬𝑷 [∫

∞

0
𝑍𝑡𝐶𝑡𝜆𝑡𝑑𝑡]. (5.10)

通过构造 𝑍(𝜔, 𝑡), 在跳跃时 𝑡 = 𝑇𝑛(𝜔), 𝑍(𝜔, 𝑡) = 𝑍(𝜔, 𝑡−)𝜆(𝜔, 𝑡), 否则, 𝑍(𝜔, 𝑡) =
𝑍(𝜔, 𝑡−). (5.10)式的左边简化为

𝑬𝑷 [∫
∞

0
𝑍𝑡−𝐶𝑡𝜆𝑡𝑑𝑁𝑡] = 𝑬𝑷 [∫

∞

0
𝑍𝑡−𝐶𝑡𝜆𝑡𝑑𝑡] (5.11)

这里,我们用到了 𝑁(𝜔, 𝑡) − 𝑡在 𝑷 下为 𝑭 -鞅这一事实. 根据(5.11)即得(5.10),因
为半实直线上的任何可数集的勒贝格测度均为零.

引理 5.6. 如果定理5.1对 𝑮成立,则它对任何满足 𝑮 ≤ 𝑮′ ≤ 𝑭 的 𝑮′也成立.

引理5.6的证明. 直接来自引理 5.4.

因此,我们可以集中注意力证明定理5.1对 𝑮 = 𝑭𝑁 . 以下引理是 [97]第三章中
定理 1.21的一个版本. 我们不作证明.

引理 5.7. 假设同引理5.2. 设 𝑷 和 𝑸 分别是 (Ω, ℱ 𝑁
∞ ) 上的两个概率测度, 其中

𝑁(𝜔.𝑡)具有共同的 𝑭𝑁 补偿子. 则 𝑷 和 𝑸在 ℱ 𝑁
∞ 上相等.

我们将利用哈恩-巴拿赫定理证明点过程的可料表示性质. 证明思路来自 [98] .

引理 5.8. 假设同定理5.1,并且引理5.2中的某个陈述成立. 如果𝐿 = {𝐿(𝜔, 𝑡),𝑭𝑁 ,𝑷 }
是一致可积鞅,则存在不可区分意义下唯一的 𝑭𝑁 -可料过程 𝐻(𝜔, 𝑡),使得除开一
个 𝑷 -零集,

𝐿(𝜔, 𝑡) = 𝐿(𝜔, 0) + ∫
𝑡

0
𝐻(𝜔, 𝑠)[𝑁(𝜔, 𝑑𝑠) − 𝐴(𝜔, 𝑑𝑠)], 对于每个 𝑡. (5.12)
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引理5.8的证明. 设𝐿1(𝑷 )由(5.12)中𝐻(𝜔, 𝑡)遍历所有𝑭𝑁 -可料过程的过程𝐿(𝜔, 𝑡)
组成. 显然, 𝐿1(𝑷 ) ⊆ 𝑀loc(𝑷 ), 𝑷 下所有局部鞅的集合. 我们的目标是证明包含
关系是等号. 如若不然,由于 𝐿1(𝑷 )是一个真闭子空间,根据哈恩-巴拿赫定理,存
在一个连续线性泛函 𝑓 ∈ 𝑀loc(𝑷 )∗,使得对于所有 𝐿 ∈ 𝐿1(𝑷 ), 𝑓(𝐿) = 0不恒等
式为零. 但是,根据 [99]定理 10.21中的经典的哈代-BMO对偶性,存在一个非零过程
𝐾 ∈ 𝐵𝑀𝑂使得

𝑬 ([𝐿, 𝐾]∞) = 0, 对任意 𝐿 ∈ 𝐿1(𝑷 ).

注意, 𝐵𝑀𝑂 ⊆ 𝑀∞
loc(𝑷 ),即 𝑷 下所有有界局部鞅的集合. 因此存在一个停止时间

𝜏 使得 |𝐾𝑡∧𝜏| ≤ 𝑀 . 为简便起见,取𝑀 = 1. 简单计算可知

𝑬 (𝐿∞𝐾0∧𝜏) = 𝑬 (𝐿∞𝐾∞∧𝜏) = 𝑬 ([𝐿, 𝐾𝑡∧𝜏]∞) = 𝑬 ([𝐿𝑡∧𝜏 , 𝐾]∞) = 0

因为 𝐿𝑡∧𝜏 ∈ 𝐿1(𝑷 ). 因此, 𝐾0 = 𝐾0∧𝜏 = 0，因为 ℱ 𝑁
0 = {∅,Ω}, 且我们可以取

𝐿 ≡ 1. 定义
𝑍𝑡 = 1 + 1

2𝐾𝑡∧𝜏 , 1
2 ≤ 𝑍𝑡 ≤ 3

2.

特别地,我们有𝑬[𝑍𝑡] = 𝑬[𝑍0] = 1,且当𝐿 ∈ 𝐿1(𝑷 )且𝐿(𝜔, 0) = 0时,𝑬 (𝐿∞𝑍∞) =
0. 这表明, 由 𝑑𝑷 ′ = 𝑍∞𝑑𝑷 定义的概率测度 𝑷 ′ 满足 𝑷 ′ ∼ 𝑷 . 根据引理5.2,

𝑀′ = {𝑀(𝜔, 𝑡),𝑭𝑁 ,𝑷 ′} 为鞅, 其中 𝑀(𝜔, 𝑡) = 𝑁(𝜔, 𝑡) − 𝐴(𝜔, 𝑡). 根据引理5.7,

𝑷 ′ = 𝑷 ,因此 𝑍∞ = 1,即 𝐾𝜏 = 0. 由于 𝜏 可以任意大,因此 𝐾 ≡ 0,矛盾.

引理 5.9. 𝐿(𝜔, 𝑡) = 𝑬𝑷 [𝑑𝑸/𝑑𝑷 |ℱ 𝑁
𝑡 ]是 𝑭𝑁 -一致可积鞅.

引理5.9的证明. 由引理5.4.

引理 5.10. 在 (A0)-(A4)条件下, 𝑀(𝜆𝑁 ) = {𝑀(𝜆𝑁 )(𝜔, 𝑡),𝑭𝑁 ,𝑸}为鞅.

定理5.10的证明. 根据鞅表示引理5.8,存在一个 𝑭𝑁 -可料过程𝐻(𝜔, 𝑡)使得

𝐿(𝜔, 0) = 1, 𝐿(𝜔, 𝑡) = 1 + ∫
𝑡

0
𝐻(𝜔, 𝑠)(𝑁(𝜔, 𝑑𝑠) − 𝑑𝑠)� (5.13)

根据(5.13), 在跳跃时 𝑡 = 𝑇𝑛(𝜔), 𝐿(𝜔, 𝑡) = 𝐿(𝜔, 𝑡−) + 𝐻(𝜔, 𝑡), 否则, 𝐿(𝜔, 𝑡) =
𝐿(𝜔, 𝑡−). 我们在扩充半实直线 [0, ∞]上引入 𝜏(𝜔) = inf {𝑡 ∶ 𝐿(𝜔, 𝑡) = 0},对于给
定的 𝜔,它在 ∞处严格为正,并且可能取值无穷. 此外,根据可测截口定理 ( [96] ),

𝜏(𝜔)也是一个 𝑭𝑁 -停时. 由此可知

𝜆𝑁 (𝜔, 𝑡) = [1 + 𝐻(𝜔, 𝑡)𝐿−1(𝜔, 𝑡−)] 1{𝜔 ∶ 𝜏(𝜔) > 𝑡} (5.14)

是一个非负的𝑭𝑁 -可料过程,满足(5.8). 根据引理5.2, 𝑀(𝜆𝑁 ) = {𝑀(𝜆𝑁 )(𝜔, 𝑡),𝑭𝑁 ,𝑸}
是鞅.
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唯一性同样来自引理5.2. 结合引理5.5和引理5.10,我们得到以下结论.

引理 5.11. 假设同定理 5.1. 𝜆𝑁 (𝜔, 𝑡)是唯一的 𝑭𝑁 -可料过程,使得定理5.1成立.

事实上，我们也有定理5.1的逆定理.

定理 5.12. 假设 𝑁 = {𝑁(𝜔, 𝑡),𝑭𝑁 ,𝑷 }是强度为 1的泊松过程,而 𝜆(𝜔, 𝑡)是一个
满足 (A0)-(A4) 的 𝑭𝑁 -可料过程. 设 𝑸 是 (Ω, ℱ 𝑁

∞ ) 上的另一个概率测度, 使得

𝑀(𝜆) = {𝑀(𝜆),𝑭𝑁 ,𝑸}为鞅. 则(5.4)对于 𝜆(𝜔, 𝑡)和 𝑡 ∈ [0, ∞]成立.

定理5.12的证明. 根据引理5.7,只需证明,对于每个 𝑡 ≥ 0, 𝑸在 ℱ𝑡上的限制𝑸𝑡与
概率测度 𝑸̃𝑡 相同,该概率测度由 𝑸̃𝑡(𝑑𝜔) = exp[𝜁 𝑡

0(𝜆)(𝜔)]𝑷 (𝑑𝜔)在 ℱ 𝑁
𝑡 给出. 根

据引理5.2,只需要证明,对于任意非负的 𝑭𝑁 -可料过程 𝐶(𝜔, 𝑠),在 [0, 𝑡]之外为零,

𝑬𝑸̃𝑡[∫
𝑡

0
𝐶𝑠𝑑𝑁𝑠] = 𝑬𝑸̃𝑡[∫

𝑡

0
𝐶𝑠𝜆𝑠𝑑𝑠]. (5.15)

根据 𝑸̃𝑡的定义, (5.15)变为

𝑬𝑷 [𝑍𝑡 ∫
𝑡

0
𝐶𝑠𝑑𝑁𝑠] = 𝑬𝑷 [𝑍𝑡 ∫

𝑡

0
𝐶𝑠𝜆𝑠𝑑𝑠], (5.16)

结合福比尼定理和引理5.3,可得

𝑬𝑷 [∫
𝑡

0
𝑍𝑠𝐶𝑠𝑑𝑁𝑠] = 𝑬𝑷 [∫

𝑡

0
𝑍𝑠𝐶𝑠𝜆𝑠𝑑𝑠]. (5.17)

根据引理5.5中的相同推理, (5.17)的左边可变形为

𝑬𝑷 [∫
𝑡

0
𝑍𝑠−𝐶𝑠𝜆𝑠𝑑𝑁𝑠] = 𝑬𝑷 [∫

𝑡

0
𝑍𝑠−𝐶𝑠𝜆𝑠𝑑𝑠] (5.18)

其中我们利用以下事实, 𝑁(𝜔, 𝑡) − 𝑡是 𝑷 下的 𝑭𝑁 -鞅. 根据(5.18)可得(5.17),因为
任意 [0, 𝑡]上的可数集的勒贝格测度为零. 因此, 𝑸在 ℱ𝑡 上的限制 𝑸𝑡 与 𝑸̃𝑡 具有
相同补偿子. (5.4),对固定 𝑡 ≥ 0成立. 根据引理 5.4, (5.4)对 𝑡 = ∞也成立.

推论 5.13. 一个适应的、右连续的、非递减的、具有单位跳跃且初值为零的整值
随机过程具有极小可料强度当且仅当它是绝对连续测度变换下的标准泊松过程.

5.2 典则分解

霍克斯过程是一类特殊的点过程, 也称作自激励过程, 其增量可能不相互独
立. 霍克斯过程在时刻 𝑡之后的时刻到达数目和到达时间取决于时刻 𝑡之前的事
件到达数目𝑁𝑡以及之前的到达时间 0 = 𝑇0 < 𝑇1 < 𝑇2 < ⋯ < 𝑇𝑁𝑡 ,

𝜆(𝜔, 𝑡) = 𝜇(𝑡) + ∑
𝑛∶𝑇𝑛(𝜔)<𝑡

𝜙(𝑡 − 𝑇𝑛(𝜔)),
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其中 𝜇 是定义在 [0, ∞)上的非负局部可积函数,称为背景强度函数; 𝜙是定义在
实直线上的非负连续函数,满足

𝑚 = ∫
∞

0
𝜙(𝑡)𝑑𝑡 < ∞,

且当 𝑡 < 0时 𝜙(𝑡) = 0. 霍克斯过程在各种统计应用中发挥着重要作用. 例如,它
可以模拟事件到达率随时间波动的情况, 比如客户访问或网络请求, 这些波动可
能是由内部因素引起的. 由于霍克斯过程的强度依定义是极小可料的,因而

定理 5.14. 霍克斯过程是绝对连续测度变换下的标准泊松过程.

这一定理为霍克斯过程的重要性采样提供了理论基础. 主要定理的另一推论
则是考克斯过程, 也称为双随机泊松过程, 通常在给定某个随机测度时作为随机
测度引入. 事实上, [100]定义了此类测度空间上的完备可分度量,从而允许条件期
望. 这里我们采用不同的定义. 假设 𝑁 = {𝑁(𝜔, 𝑡),𝑭 ,𝑷 }满足 (P0)-(P5). 考克斯
过程𝑁 由其补偿子 𝐴(𝜔, 𝑡)刻画

(C0) (适应) 𝑁(𝜔, 𝑡), 𝐴(𝜔, 𝑡)适应于 𝑭 ;

(C1) (初始适应) ℱ0包含由所有 𝐴(⋅, 𝑡), 𝑡 ≥ 0生成的 𝜎-代数;

(C2) (条件泊松律)随机变量𝑁(⋅, 𝑡) − 𝑁(⋅, 𝑠), 0 ≤ 𝑠 < 𝑡在 𝑛 = 0, 1, 2, … 时满足条
件泊松律

𝑷 (𝑁(⋅, 𝑡) − 𝑁(⋅, 𝑠) = 𝑛|ℱ𝑠)(𝜔) = (𝐴(𝜔, 𝑡) − 𝐴(𝜔, 𝑠))𝑛𝑒𝐴(𝜔,𝑠)−𝐴(𝜔,𝑡)

𝑛! ;

(C3) (条件独立增量)随机变量 𝑁(⋅, 𝑡) − 𝑁(⋅, 𝑠)和 𝑁(⋅, 𝑢) − 𝑁(⋅, 𝑣)在给定 ℱ0 时
是条件独立的,其中 0 ≤ 𝑠 < 𝑡 ≤ 𝑢 < 𝑣.

由定理5.1,定理5.12和勒贝格分解定理,我们得到

定理 5.15. 任意满足 (C0)-(C3)的考克斯过程都可以分解为三部分之和

𝑁 + 𝐴 + 𝑀, (5.19)

其中 𝑁 是具有强度的考克斯过程, 𝐴几乎必然关于勒贝格测度奇异, 𝑀 是鞅. 特

别地,如果𝑁 独立于 𝐴,则𝑁 为非齐次泊松过程.

引理 5.16. 具有自然强度的考克斯过程是泊松过程.

引理5.16的证明. 对任意 𝑡 ≥ 0, 𝐴𝑡 ∈ ℱ 𝑁
0 = {∅,Ω}. 因而 𝐴𝑡为确定函数.
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引理 5.17. 一个适应的、右连续的、非减的过程,其勒贝格分解中的绝对连续分

量和奇异分量都是适应的.

引理5.17的证明. 设 𝐷[0, ∞) 为所有在 [0, ∞) 上的右连左极函数构成的空间, 且
该函数具有 [101]意义下的可度量拓扑 (参见 [102]第 12节). 定义 𝐹 (𝜔) ⊆ 𝐷[0, ∞) ×
𝐷[0, ∞) 为适应的、右连续的、非减过程 𝐴 的勒贝格分解 𝐴 = 𝐵 + 𝐶 中的所
有对 (𝐵, 𝐶), 其中 𝐵 绝对连续, 𝐶 关于勒贝格测度奇异. 对于给定的 𝜔 ∈ Ω,

𝐹 (𝜔)非空. 根据可测截面定理 ( [96]第三章定理 81),我们可以选取一个可测过程
(𝐵, 𝐶) ∶ Ω → 𝐷[0, ∞) × 𝐷[0, ∞),使得勒贝格分解成立. 𝐵 是适应的这一事实由

Ω 𝐷[0, ∞) × 𝐷[0, ∞)

[0, ∞)

(𝐵,𝐶)

𝐵𝑡
𝜋1

𝑡

交换图得出, 其中 𝜋1
𝑡 ∶ (𝐵⋅, 𝐶⋅) ↦ 𝐵𝑡 是从 𝐷[0, ∞) × 𝐷[0, ∞)到 [0, ∞)的可测投

影. 同样,我们可以使用另一个可测投影 𝜋2
𝑡 ∶ (𝐵⋅, 𝐶⋅) ↦ 𝐶𝑡 从 𝐷[0, ∞) × 𝐷[0, ∞)

到 [0, ∞),并利用类似的交换关系,得出 𝐶 也是适应的.

定理5.19的证明. 设 (𝑁, 𝐴) = {𝑁(𝜔, 𝑡), 𝐴(𝜔, 𝑡),𝑭 ,𝑷 }为考克斯过程. 如果 𝑭𝑁 是
由 𝑁(⋅, 𝑠), 0 ≤ 𝑠 ≤ 𝑡生成的自然滤子,且 𝐴𝑁 (𝜔, 𝑡)是 𝐴(𝜔, 𝑡)在 𝑭𝑁 上的可料投影
(参见注记5.1中的定义),则𝑁(𝜔, 𝑡) − 𝐴𝑁 (𝜔, 𝑡)是 𝑭𝑁 -鞅. 根据引理5.17,存在一个
𝑭𝑁 -可料集合 𝐸 ⊆ Ω × [0, ∞),使得𝑁(𝜔, 𝑡)在该集合上分解为

𝑁𝑠(𝜔, 𝑡) = ∫
𝑡

0
1𝐸(𝜔, 𝑠)𝑁(𝜔, 𝑑𝑠), 𝑁𝑐(𝜔, 𝑡) = 𝑁(𝜔, 𝑡) − 𝑁𝑠(𝜔, 𝑡).

此外,点过程的勒贝格奇异分量 𝑁𝑠(𝜔, 𝑡)具有 𝑭𝑁 -可料补偿子 𝐴𝑁,𝑠(𝜔, 𝑡). 运用杜
布-梅耶分解定理于 𝑁𝑠(𝜔, 𝑡),可得分解公式(5.19). 如果 𝑁𝑐(𝜔, 𝑡)与 𝐴𝑠(𝜔, 𝑡)独立,

则𝑁𝑐(𝜔, 𝑡)也与 𝐸 独立,因为 𝐸 是 𝐴𝑠(𝜔, 𝑡)的支撑集. 这意味着 𝑭𝑁 -可料集 𝐸 分
解为 𝐸 = Ω × 𝐸′,其中 𝐸′ 是 [0, ∞)的子集. 故 𝐸 是 𝑭𝑁𝑐

-可料的,且引理5.16适
用于𝑁𝑐(𝜔, 𝑡),也就是说, 𝑁𝑐(𝜔, 𝑡)是非齐次泊松过程.

引理 5.18. 点过程𝑁(𝜔, 𝑡)在区间

(𝑠, 𝑡), [𝑠, 𝑡), (𝑠, 𝑡], [𝑠, 𝑡], 𝑠 < 𝑡

上几乎必然是常数,当且仅当其补偿子 𝐴(𝜔, 𝑡)也是如此.
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引理5.18的证明. 设 𝑁̄(𝜔, 𝑡) = 𝑁(𝜔, 𝑡) − 𝑁(𝜔, 𝑠). 如果𝑁(𝜔, 𝑡)几乎必然是常数,则
𝑁̄(𝜔, 𝑡)是一个恒等于零的点过程. 根据杜布-梅耶分解定理, 其补偿子恒等于零.

反之,如果补偿子 𝐴(𝜔, 𝑡)几乎必然是常数,则 𝑁̄(𝜔, 𝑡)是一个补偿子为 ̄𝐴(𝜔, 𝑡) ≡ 0
的点过程. 根据引理5.2中的命题 (1), 𝑁̄(𝜔, 𝑡) ≡ 0.

定理 5.19. 霍克斯-考克斯过程是非齐次泊松过程.

定理5.19的证明. 假设 𝑁 = {𝑁(𝜔, 𝑡),𝑭 ,𝑷 }是一个霍克斯过程. 我们将证明 𝜙 ≡
0. 如果存在 𝑡0 ≥ 0使得 𝜙(𝑡0) ≠ 0, 则存在 𝛿 > 0使得 𝜙 > 0在 [𝑡0, 𝑡0 + 𝛿]上成
立,因为 𝜙在 [0, ∞)上连续. 我们断言点过程 𝑁(𝜔, 𝑡)在区间 (0, 𝑡0 + 𝛿]上以正概
率发生跳跃, 因为否则 𝐴(𝜔, 𝑡 + 𝛿) > 0, 这将与引理5.18相矛盾. 然而这是不可能
的,因为𝑁(𝜔, 𝑡)会在区间 (0, 𝑡0 + 𝛿]内的某个时刻 𝑡′发生跳跃,而 𝜙(𝑡 − 𝑡′) ≠ 0在
[𝑡′ + 𝑡0, 𝑡′ + 𝑡0 + 𝛿] ⊆ (𝑡0, 2(𝑡0 + 𝛿)]上成立. 因此 𝜆(𝜔, 𝑡)在 (𝑡0, 2(𝑡0 + 𝛿)]上不是确
定性的,与引理5.16矛盾.

最后,我们给出点过程的重要性采样与拟合优度检验算法的伪代码.

Algorithm 1一般点过程的重要性采样
Require: 目标点过程𝑁𝑡,目标强度 𝜆𝑃

𝑡 ,提议强度 𝜆𝑄
𝑡 ,样本数为𝑀

Ensure: 目标过程下统计量的无偏估计
1: for 𝑚 = 1 to 𝑀 do
2: 根据提议强度 𝜆𝑄

𝑡 模拟样本路径 {𝑧(𝑚)
1 , … , 𝑧(𝑚)

𝑛𝑚 } (𝑧 = (𝑡, 𝑥))
3: 使用吉萨诺夫公式计算似然权重

𝑊 (𝑚) = exp ( ∫
𝑇

0
log

𝜆𝑃
𝑠

𝜆𝑄
𝑠

𝑑𝑁𝑠 − ∫
𝑇

0
(𝜆𝑃

𝑠 − 𝜆𝑄
𝑠 )𝑑𝑠)

4: if 存在簇或树状结构 then
5: 应用簇分解或边缘校正保护区域来调整路径
6: end if
7: 存储加权样本 ({𝑧(𝑚)

1 , … , 𝑧(𝑚)
𝑛𝑚 }, 𝑊 (𝑚))

8: end for
9: 计算过程统计量 𝑓 的蒙特卡罗估计量

𝑬̂[𝑓 (𝑁)] = 1
𝑀

𝑀

∑
𝑚=1

𝑊 (𝑚)𝑓({𝑧(𝑚)
1 , … , 𝑧(𝑚)

𝑛𝑚 })
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Algorithm 2纯时点过程的拟合优度检验
Require: 观测点过程事件时间 𝑡1, 𝑡2, … , 𝑡𝑛，拟合强度函数 𝜆(𝑡)，显著性水平 𝛼
Ensure: 检验结果和 p值

1: 计算累积强度函数 𝛬(𝑡) = ∫𝑡
0 𝜆(𝑠)𝑑𝑠

2: 计算变换后的时间 𝜏𝑖 = 𝛬(𝑡𝑖),其中 𝑖 = 1, … , 𝑛
3: 计算变换后的间隔时间 𝑠𝑖 = 𝜏𝑖 − 𝜏𝑖−1 for 𝑖 = 1, … , 𝑛(𝜏0 = 0)

4: 计算经验分布函数 𝐹𝑛(𝑠)和理论分布函数 𝐹 (𝑠) = 1 − 𝑒−𝑠(单位指数分布)

5: 计算 K-S统计量 𝐷 = sup𝑠 |𝐹𝑛(𝑠) − 𝐹 (𝑠)|
6: 通过查表计算 p值: 比较 𝐷与 K-S分布在样本大小 𝑛下的临界值
7: if 𝑝值 < 𝛼 then
8: 拒绝𝐻0,接受𝐻1: 数据不是来自某一点过程
9: else

10: 接受𝐻0: 数据来自某一点过程
11: end if
12: 返回 p值和检验结果
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第 6章 天文案例分析
在光学波段的天文观测中,图像数据通常以灰度矩阵的形式呈现. 特别是在

可见光和近红外等波段,观测到的信号往往会受到天空背景、探测器噪声等因素
的影响. 尤其是低光强或弱光源条件下,来自天体的少量光子会对观测数据产生
较大影响. 在这种情况下, 泊松统计方法变得尤为重要, 且由于天体辐射的特点,

光子的数量通常是稀疏的. 因此,在进行源检测时,泊松分布提供了一个较为合适
的模型,能够有效地分离噪声与信号. [103]

元素丰度与银河系演化巡天 (Stellar Abundance and Galactic Evolution Survey,

SAGES) 是一个利用 SAGES 测光系统开展的北天多波段测光巡天. 本数据包括
DR1(斯图尔德天文台基特峰站 2.3米博克望远镜观测的 uv波段)和 Dr1s(在南山
一米望远镜观测的 gri波段). 国家天文台 2024年公开的 SAGES巡天第一次数据
发布及其增补超过 10.5GB.该项调查旨在研究恒星丰度和星系演化,可在线供公
众访问[https://nadc.china-vo.org/res/r100876]. [104-105] 我们运用相关工具对获取的
u, v, g, r, i波段进行了点过程拟合优度检验和判别分析,根据从 Gaia数据库中查
询到的数据,判别分析的结果显示了 RA=25.21,DEC=34.17天区中候选老年红超
巨星在 SAGES数据集中对应的 ID.

6.1 图像去噪

我们这里以 i波段为例进行描述统计分析. 原始图像中亮度信息是对天体光
学强度的直接反映,其记录了该探测器单元上到达的光子数. 天文图像数据中的
噪声来源有多种,我们所考虑的数据集当中的噪声主要是来自宇宙射线的背景噪
声与来自地球大气层的外部噪声. 我们通过二维高斯核对原始图像进行卷积,可
以实现对原始图像的平滑,作为对真实数据的预处理. 设 𝐼 为原始图像,平滑后的
图像 𝐼′可以通过下面的公式计算得到

𝐼′(𝑥, 𝑦) =
𝑘

∑
𝑢=−𝑘

𝑘

∑
𝑣=−𝑘

𝐼(𝑥 − 𝑢, 𝑦 − 𝑣) ⋅ 𝐺(𝑢, 𝑣)

其中 𝑘为调节参数, 𝐺是二维高斯核函数.
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6.2 局部峰值检测

接下来我们对平滑后的图像进行局部峰值检测

𝐼(𝑖, 𝑗) > 𝐼(𝑖 − 1, 𝑗), 𝐼(𝑖, 𝑗) > 𝐼(𝑖 + 1, 𝑗),

𝐼(𝑖, 𝑗) > 𝐼(𝑖, 𝑗 − 1), 𝐼(𝑖, 𝑗) > 𝐼(𝑖, 𝑗 + 1),

𝐼(𝑖, 𝑗) > 𝛿 ∗ 𝐼max

其中 𝛿 是我们选定的阈值, 𝐼max 是平滑后图像像素的最大值. 通过引入与图像数
据相同尺寸的二进制掩码矩阵,其中值为 1的区域代表感兴趣的目标区域,值为 0

的区域代表需要忽略的背景. 将掩码与图像数据逐像素相乘,再对掩码区域中的
非零像素值求和以计算该区域内的总光子计数.

图 6.1 i波段源检测的对比图像

这里用到的方法事实上是基于天文图像处理中计数值通常是整数,这是由光
子检测的离散性和探测器的工作原理决定的,因为天文图像通常记录的是个别光
子的到达事件,统计特性服从泊松分布. 根据这一方法,我们可以通过求泊松分布
累计分布函数的逆来给出置信水平 𝛼下检测的置信区间.

表 6.1 源检测泊松逆分布的置信区间

Threshold = 0.95 for i Band

Source 1 in Mosaic Image: Counts = 69526, 95% CI = [69010, 70043]

Source 2 in Mosaic Image: Counts = 70775, 95% CI = [70254, 71297]
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6.3 拟合优度检验

利佩雷 𝐾 统计量是用于分析二维点模式是否具有完全空间随机性 (CSR)的
工具. 其公式为

̂𝐾(𝑡) = 1
区域面积∑

𝑖≠𝑗
𝐼(𝑑𝑖𝑗 < 𝑡)

其中, 𝑑𝑖𝑗 表示点 𝑖和点 𝑗之间的距离, 𝐼(𝑑𝑖𝑗 < 𝑡)是指在距离 𝑡内的点对. 对于 CSR

点模式, ̂𝐾(𝑡)应满足 ̂𝐾(𝑡) ≈ 𝜋𝑡2. 偏离该期望值的结果表明点模式不满足 CSR,可
能存在簇聚或排斥现象. 我们对平滑后的 i波段图像进行利佩雷 𝐾 统计分析.

图 6.2 利佩雷 ̂𝐾(𝑡)统计量.

从图像可以看出, CSR呈现二次函数增长的趋势, 而 i波段的亮度则始终保
持一个低水平. 描述性分析的结果显示点模式不满足 CSR,所以我们还需要做进
一步的分析. 通过绘制不同波段星等和有效温度的热力图,我们发现有效温度与
u, v, g, r, i各个波段的星等具有很强的相关性,这示意我们通过前面介绍的多元统
计分析方法来研究它们之间的关系.

图 6.3 有效温度与 g波段的对比图像
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6.4 判别分析

根据描述性统计分析,我们将在赤道坐标为 RA = 25.21和 Dec = 34.17的天
区内推测候选天体. 考虑恒星有效温度的对数 log 𝑇eff对 u, v, g, r, i波段星等

log 𝑇eff ∼ 𝑢 + 𝑣 + 𝑔 + 𝑟 + 𝑖

在 RA = 25.21和 Dec = 34.17天区中关于不同观测时间的主成分回归分析.

第 1主成分: 贡献率 =82.40%,累计贡献率 =82.40%

第 2主成分: 贡献率 =14.79%,累计贡献率 =97.19%

第 3主成分: 贡献率 =1.42%,累计贡献率 =98.61%

第 4主成分: 贡献率 =0.77%,累计贡献率 =99.39%

第 5主成分: 贡献率 =0.61%,累计贡献率 =100.00%

其中第一主成分为 g,第二主成分为 g-r,前两个主成分累计荷载达到了 95%.

根据回归分析的结果,我们做了系数是否显著区别于零的 𝐹 检验. 方差分析
的结果显示不同波段的星等具有显著性差异.

图 6.4 单因素方差分析.

通过 Gaia 获得的老年红超巨星数据我们训练了线性判别模型, 并在由实际
数据构成的测试集上进行了预测. 结果显示了 12个可能的老年红超巨星候选,我
们将其对应的天体 ID、赤经 (°)、赤纬 (°)、Gaia G星等、Gaia BP-RP颜色指数和
基于后验判别概率计算的置信度 (%)列在下面的表格中,供天文学研究者参考.
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图 6.5 Gaia训练集上的线性判别决策边界.

表 6.2 RA=25.21,DEC=34.17天区老年红超巨星判别结果表

天体 ID 赤经 (°) 赤纬 (°) Gaia G星等 Gaia BP-RP颜色指数 置信度 (%)

SAGE014230.5+342136 384.41 34.36 19.59 0.93 99.986

SAGE014251.1+333515 385.69 33.59 18.47 2.04 59.802

SAGE014231.2+342258 384.45 34.38 19.59 0.93 99.986

SAGE014231.9+342614 384.49 34.44 19.59 0.93 99.986

SAGE014231.4+342351 384.46 34.40 19.59 0.93 99.986

SAGE014226.9+340443 384.18 34.08 19.44 0.99 99.987

SAGE014226.3+340147 384.15 34.03 19.44 0.99 99.987

SAGE014224.4+341139 384.02 34.19 19.44 0.99 99.987

SAGE014224.9+340315 384.06 34.05 19.44 0.99 99.987

SAGE014224.0+340734 384.00 34.13 19.44 0.99 99.987

SAGE014226.5+340434 384.16 34.08 19.44 0.99 99.987

SAGE014230.0+341919 384.37 34.32 19.59 0.93 99.986

注：1. 赤经单位为度 (°)，由时角 (1小时 =15°)转换而来. 2. BP-RP颜色指数越
大,恒星表面温度越低 (越“红”). 3. 置信度基于线性判别模型后验概率计算,

≥90%为高可靠判别，<60%为低可靠判别.
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